Properties

Label 317322f1
Conductor 317322317322
Discriminant 5.796×1013-5.796\times 10^{13}
j-invariant 1860867122 -\frac{1860867}{122}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3x219995x+1153259y^2+xy=x^3-x^2-19995x+1153259 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3x2z19995xz2+1153259z3y^2z+xyz=x^3-x^2z-19995xz^2+1153259z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3319923x+73488654y^2=x^3-319923x+73488654 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 0, -19995, 1153259])
 
gp: E = ellinit([1, -1, 0, -19995, 1153259])
 
magma: E := EllipticCurve([1, -1, 0, -19995, 1153259]);
 
oscar: E = elliptic_curve([1, -1, 0, -19995, 1153259])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  317322 317322  = 232172612 \cdot 3^{2} \cdot 17^{2} \cdot 61
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  57962172016494-57962172016494 = 123917661-1 \cdot 2 \cdot 3^{9} \cdot 17^{6} \cdot 61
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  1860867122 -\frac{1860867}{122}  = 12133413611-1 \cdot 2^{-1} \cdot 3^{3} \cdot 41^{3} \cdot 61^{-1}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.39345379018409867385203233331.3934537901840986738520323333
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.84711209834509163481916890333-0.84711209834509163481916890333
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.79538571075886370.7953857107588637
Szpiro ratio: σm\sigma_{m} ≈ 3.2705821185024283.270582118502428

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.616161854942631943144215454340.61616185494263194314421545434
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 2 2  = 1211 1\cdot2\cdot1\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.23232370988526388628843090871.2323237098852638862884309087
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.232323710L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.6161621.0000002121.232323710\displaystyle 1.232323710 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.616162 \cdot 1.000000 \cdot 2}{1^2} \approx 1.232323710

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 317322.2.a.f

qq2+q4q54q7q8+q10+6q116q13+4q14+q166q19+O(q20) q - q^{2} + q^{4} - q^{5} - 4 q^{7} - q^{8} + q^{10} + 6 q^{11} - 6 q^{13} + 4 q^{14} + q^{16} - 6 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 1693440
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I1I_{1} nonsplit multiplicative 1 1 1 1
33 22 IIIIII^{*} additive 1 2 9 0
1717 11 I0I_0^{*} additive 1 2 6 0
6161 11 I1I_{1} split multiplicative -1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 1, 1463, 0], [1463, 2, 1462, 3], [1, 0, 2, 1], [1, 2, 0, 1], [977, 2, 977, 3], [367, 2, 0, 1], [673, 2, 673, 3], [733, 2, 733, 3]]
 
GL(2,Integers(1464)).subgroup(gens)
 
Gens := [[1, 1, 1463, 0], [1463, 2, 1462, 3], [1, 0, 2, 1], [1, 2, 0, 1], [977, 2, 977, 3], [367, 2, 0, 1], [673, 2, 673, 3], [733, 2, 733, 3]];
 
sub<GL(2,Integers(1464))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1464=23361 1464 = 2^{3} \cdot 3 \cdot 61 , index 22, genus 00, and generators

(1114630),(1463214623),(1021),(1201),(97729773),(367201),(67326733),(73327333)\left(\begin{array}{rr} 1 & 1 \\ 1463 & 0 \end{array}\right),\left(\begin{array}{rr} 1463 & 2 \\ 1462 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 977 & 2 \\ 977 & 3 \end{array}\right),\left(\begin{array}{rr} 367 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 673 & 2 \\ 673 & 3 \end{array}\right),\left(\begin{array}{rr} 733 & 2 \\ 733 & 3 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1464])K:=\Q(E[1464]) is a degree-501910732800501910732800 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1464Z)\GL_2(\Z/1464\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 52887=317261 52887 = 3 \cdot 17^{2} \cdot 61
33 additive 22 35258=217261 35258 = 2 \cdot 17^{2} \cdot 61
1717 additive 146146 1098=23261 1098 = 2 \cdot 3^{2} \cdot 61
6161 split multiplicative 6262 5202=232172 5202 = 2 \cdot 3^{2} \cdot 17^{2}

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 317322f consists of this curve only.

Twists

The minimal quadratic twist of this elliptic curve is 1098a1, its twist by 1717.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.1464.1 Z/2Z\Z/2\Z not in database
66 6.0.3137785344.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.