Properties

Label 4275i2
Conductor 42754275
Discriminant 2.538×1014-2.538\times 10^{14}
j-invariant 935871446716825622284891 -\frac{9358714467168256}{22284891}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+y=x3987825x+377893156y^2+y=x^3-987825x+377893156 Copy content Toggle raw display (homogenize, simplify)
y2z+yz2=x3987825xz2+377893156z3y^2z+yz^2=x^3-987825xz^2+377893156z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x315805200x+24185162000y^2=x^3-15805200x+24185162000 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 1, -987825, 377893156])
 
gp: E = ellinit([0, 0, 1, -987825, 377893156])
 
magma: E := EllipticCurve([0, 0, 1, -987825, 377893156]);
 
oscar: E = elliptic_curve([0, 0, 1, -987825, 377893156])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  4275 4275  = 3252193^{2} \cdot 5^{2} \cdot 19
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  253838836546875-253838836546875 = 13856195-1 \cdot 3^{8} \cdot 5^{6} \cdot 19^{5}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  935871446716825622284891 -\frac{9358714467168256}{22284891}  = 121232195131713-1 \cdot 2^{12} \cdot 3^{-2} \cdot 19^{-5} \cdot 13171^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.00543235177953352056174571542.0054323517795335205617457154
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.651407251228428487563743430330.65140725122842848756374343033
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.06833037881645641.0683303788164564
Szpiro ratio: σm\sigma_{m} ≈ 6.34210153619616.3421015361961

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.478557463243488595730502451010.47855746324348859573050245101
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 2 2  = 211 2\cdot1\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 0.957114926486977191461004902020.95711492648697719146100490202
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

0.957114926L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.4785571.0000002120.957114926\displaystyle 0.957114926 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.478557 \cdot 1.000000 \cdot 2}{1^2} \approx 0.957114926

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   4275.2.a.a

q2q2+2q43q7+3q11+6q13+6q144q16+3q17q19+O(q20) q - 2 q^{2} + 2 q^{4} - 3 q^{7} + 3 q^{11} + 6 q^{13} + 6 q^{14} - 4 q^{16} + 3 q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 67200
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 22 I2I_{2}^{*} additive -1 2 8 2
55 11 I0I_0^{*} additive 1 2 6 0
1919 11 I5I_{5} nonsplit multiplicative 1 1 5 5

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
55 5B.4.2 5.12.0.2

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[379, 0, 0, 569], [6, 13, 515, 451], [211, 390, 105, 241], [561, 10, 560, 11], [563, 180, 420, 209], [1, 0, 10, 1], [1, 10, 0, 1]]
 
GL(2,Integers(570)).subgroup(gens)
 
Gens := [[379, 0, 0, 569], [6, 13, 515, 451], [211, 390, 105, 241], [561, 10, 560, 11], [563, 180, 420, 209], [1, 0, 10, 1], [1, 10, 0, 1]];
 
sub<GL(2,Integers(570))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 570=23519 570 = 2 \cdot 3 \cdot 5 \cdot 19 , index 4848, genus 11, and generators

(37900569),(613515451),(211390105241),(5611056011),(563180420209),(10101),(11001)\left(\begin{array}{rr} 379 & 0 \\ 0 & 569 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 515 & 451 \end{array}\right),\left(\begin{array}{rr} 211 & 390 \\ 105 & 241 \end{array}\right),\left(\begin{array}{rr} 561 & 10 \\ 560 & 11 \end{array}\right),\left(\begin{array}{rr} 563 & 180 \\ 420 & 209 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[570])K:=\Q(E[570]) is a degree-354585600354585600 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/570Z)\GL_2(\Z/570\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
33 additive 88 475=5219 475 = 5^{2} \cdot 19
55 additive 1414 9=32 9 = 3^{2}
1919 nonsplit multiplicative 2020 225=3252 225 = 3^{2} \cdot 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 5.
Its isogeny class 4275i consists of 2 curves linked by isogenies of degree 5.

Twists

The minimal quadratic twist of this elliptic curve is 57c2, its twist by 15-15.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.76.1 Z/2Z\Z/2\Z not in database
44 Q(ζ15)+\Q(\zeta_{15})^+ Z/5Z\Z/5\Z not in database
66 6.0.109744.2 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 8.2.14428733866875.8 Z/3Z\Z/3\Z not in database
1010 10.0.961083984375.1 Z/5Z\Z/5\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/10Z\Z/10\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ss add add ord ord ord ord nonsplit ord ord ord ord ord ord ord
λ\lambda-invariant(s) 2,5 - - 0 0 0 0 0 0 0 0 0 0 2 0
μ\mu-invariant(s) 0,0 - - 0 0 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.