Properties

Label 53802bm1
Conductor 5380253802
Discriminant 387535806-387535806
j-invariant 1860867122 -\frac{1860867}{122}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3x2377x+3063y^2+xy+y=x^3-x^2-377x+3063 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3x2z377xz2+3063z3y^2z+xyz+yz^2=x^3-x^2z-377xz^2+3063z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x36027x+190022y^2=x^3-6027x+190022 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 1, -377, 3063])
 
gp: E = ellinit([1, -1, 1, -377, 3063])
 
magma: E := EllipticCurve([1, -1, 1, -377, 3063]);
 
oscar: E = elliptic_curve([1, -1, 1, -377, 3063])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  53802 53802  = 23272612 \cdot 3^{2} \cdot 7^{2} \cdot 61
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  387535806-387535806 = 12337661-1 \cdot 2 \cdot 3^{3} \cdot 7^{6} \cdot 61
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  1860867122 -\frac{1860867}{122}  = 12133413611-1 \cdot 2^{-1} \cdot 3^{3} \cdot 41^{3} \cdot 61^{-1}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.400496048349592440582318777600.40049604834959244058231877760
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.84711209834509163481916890335-0.84711209834509163481916890335
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.79538571075886370.7953857107588637
Szpiro ratio: σm\sigma_{m} ≈ 2.7095374116883362.709537411688336

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 1.66314791910674170821463735811.6631479191067417082146373581
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 4 4  = 1221 1\cdot2\cdot2\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 6.65259167642696683285854943266.6525916764269668328585494326
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

6.652591676L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.6631481.0000004126.652591676\displaystyle 6.652591676 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.663148 \cdot 1.000000 \cdot 4}{1^2} \approx 6.652591676

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 53802.2.a.cd

q+q2+q4+q5+q8+q10+6q11+6q13+q163q17+6q19+O(q20) q + q^{2} + q^{4} + q^{5} + q^{8} + q^{10} + 6 q^{11} + 6 q^{13} + q^{16} - 3 q^{17} + 6 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 32256
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I1I_{1} split multiplicative -1 1 1 1
33 22 IIIIII additive 1 2 3 0
77 22 I0I_0^{*} additive -1 2 6 0
6161 11 I1I_{1} split multiplicative -1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 1, 1463, 0], [1463, 2, 1462, 3], [1, 0, 2, 1], [1, 2, 0, 1], [977, 2, 977, 3], [367, 2, 0, 1], [673, 2, 673, 3], [733, 2, 733, 3]]
 
GL(2,Integers(1464)).subgroup(gens)
 
Gens := [[1, 1, 1463, 0], [1463, 2, 1462, 3], [1, 0, 2, 1], [1, 2, 0, 1], [977, 2, 977, 3], [367, 2, 0, 1], [673, 2, 673, 3], [733, 2, 733, 3]];
 
sub<GL(2,Integers(1464))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1464=23361 1464 = 2^{3} \cdot 3 \cdot 61 , index 22, genus 00, and generators

(1114630),(1463214623),(1021),(1201),(97729773),(367201),(67326733),(73327333)\left(\begin{array}{rr} 1 & 1 \\ 1463 & 0 \end{array}\right),\left(\begin{array}{rr} 1463 & 2 \\ 1462 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 977 & 2 \\ 977 & 3 \end{array}\right),\left(\begin{array}{rr} 367 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 673 & 2 \\ 673 & 3 \end{array}\right),\left(\begin{array}{rr} 733 & 2 \\ 733 & 3 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1464])K:=\Q(E[1464]) is a degree-501910732800501910732800 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1464Z)\GL_2(\Z/1464\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 8967=37261 8967 = 3 \cdot 7^{2} \cdot 61
33 additive 66 5978=27261 5978 = 2 \cdot 7^{2} \cdot 61
77 additive 2626 1098=23261 1098 = 2 \cdot 3^{2} \cdot 61
6161 split multiplicative 6262 882=23272 882 = 2 \cdot 3^{2} \cdot 7^{2}

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 53802bm consists of this curve only.

Twists

The minimal quadratic twist of this elliptic curve is 1098a1, its twist by 2121.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.1464.1 Z/2Z\Z/2\Z not in database
66 6.0.3137785344.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 61
Reduction type split add ord add ord ord ord ord ord ss ord ord ss ord ord split
λ\lambda-invariant(s) 7 - 2 - 0 0 0 0 0 0,0 0 0 0,0 0 0 1
μ\mu-invariant(s) 0 - 0 - 0 0 0 0 0 0,0 0 0 0,0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.