Properties

Label 57c2
Conductor 5757
Discriminant 22284891-22284891
j-invariant 935871446716825622284891 -\frac{9358714467168256}{22284891}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+y=x3+x24390x113432y^2+y=x^3+x^2-4390x-113432 Copy content Toggle raw display (homogenize, simplify)
y2z+yz2=x3+x2z4390xz2113432z3y^2z+yz^2=x^3+x^2z-4390xz^2-113432z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x35689872x5223994992y^2=x^3-5689872x-5223994992 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 1, -4390, -113432])
 
gp: E = ellinit([0, 1, 1, -4390, -113432])
 
magma: E := EllipticCurve([0, 1, 1, -4390, -113432]);
 
oscar: E = elliptic_curve([0, 1, 1, -4390, -113432])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  57 57  = 3193 \cdot 19
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  22284891-22284891 = 132195-1 \cdot 3^{2} \cdot 19^{5}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  935871446716825622284891 -\frac{9358714467168256}{22284891}  = 121232195131713-1 \cdot 2^{12} \cdot 3^{-2} \cdot 19^{-5} \cdot 13171^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.651407251228428487563743430350.65140725122842848756374343035
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.651407251228428487563743430350.65140725122842848756374343035
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.06833037881645641.0683303788164564
Szpiro ratio: σm\sigma_{m} ≈ 9.0958748754881689.095874875488168

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.293254795828283992792107477170.29325479582828399279210747717
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 2 2  = 21 2\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 0.586509591656567985584214954340.58650959165656798558421495434
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

0.586509592L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.2932551.0000002120.586509592\displaystyle 0.586509592 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.293255 \cdot 1.000000 \cdot 2}{1^2} \approx 0.586509592

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   57.2.a.b

q2q2+q3+2q4+q52q6+3q7+q92q103q11+2q126q136q14+q154q16+3q172q18q19+O(q20) q - 2 q^{2} + q^{3} + 2 q^{4} + q^{5} - 2 q^{6} + 3 q^{7} + q^{9} - 2 q^{10} - 3 q^{11} + 2 q^{12} - 6 q^{13} - 6 q^{14} + q^{15} - 4 q^{16} + 3 q^{17} - 2 q^{18} - q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 60
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 22 I2I_{2} split multiplicative -1 1 2 2
1919 11 I5I_{5} nonsplit multiplicative 1 1 5 5

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
55 5B.1.2 5.24.0.3

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 10, 1], [21, 10, 105, 51], [1, 10, 0, 1], [6, 13, 135, 71], [181, 10, 180, 11], [7, 10, 150, 171]]
 
GL(2,Integers(190)).subgroup(gens)
 
Gens := [[1, 0, 10, 1], [21, 10, 105, 51], [1, 10, 0, 1], [6, 13, 135, 71], [181, 10, 180, 11], [7, 10, 150, 171]];
 
sub<GL(2,Integers(190))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 190=2519 190 = 2 \cdot 5 \cdot 19 , index 4848, genus 11, and generators

(10101),(211010551),(11001),(61313571),(1811018011),(710150171)\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 21 & 10 \\ 105 & 51 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 135 & 71 \end{array}\right),\left(\begin{array}{rr} 181 & 10 \\ 180 & 11 \end{array}\right),\left(\begin{array}{rr} 7 & 10 \\ 150 & 171 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[190])K:=\Q(E[190]) is a degree-73872007387200 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/190Z)\GL_2(\Z/190\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 good 22 19 19
33 split multiplicative 44 19 19
55 good 22 3 3
1919 nonsplit multiplicative 2020 3 3

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 5.
Its isogeny class 57c consists of 2 curves linked by isogenies of degree 5.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.76.1 Z/2Z\Z/2\Z not in database
44 Q(ζ5)\Q(\zeta_{5}) Z/5Z\Z/5\Z not in database
55 5.1.253125.1 Z/5Z\Z/5\Z not in database
66 6.0.109744.2 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 8.2.23085974187.2 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/10Z\Z/10\Z not in database
1515 15.1.41121891520593750000000000.1 Z/10Z\Z/10\Z not in database
2020 20.0.513156902790069580078125.1 Z/5ZZ/5Z\Z/5\Z \oplus \Z/5\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 19
Reduction type ss split ord nonsplit
λ\lambda-invariant(s) 1,4 3 2 0
μ\mu-invariant(s) 0,0 0 1 0

All Iwasawa λ\lambda and μ\mu-invariants for primes p7p\ge 7 of good reduction are zero.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.