Properties

Label 66978a1
Conductor 6697866978
Discriminant 1.697×1014-1.697\times 10^{14}
j-invariant 1860867122 -\frac{1860867}{122}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3x228605x1957653y^2+xy=x^3-x^2-28605x-1957653 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3x2z28605xz21957653z3y^2z+xyz=x^3-x^2z-28605xz^2-1957653z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3457683x125747474y^2=x^3-457683x-125747474 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 0, -28605, -1957653])
 
gp: E = ellinit([1, -1, 0, -28605, -1957653])
 
magma: E := EllipticCurve([1, -1, 0, -28605, -1957653]);
 
oscar: E = elliptic_curve([1, -1, 0, -28605, -1957653])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(351,5406)(351, 5406)0.420193779290593336027899431860.42019377929059333602789943186\infty

Integral points

(229,1746) \left(229, 1746\right) , (229,1975) \left(229, -1975\right) , (351,5406) \left(351, 5406\right) , (351,5757) \left(351, -5757\right) , (733,18882) \left(733, 18882\right) , (733,19615) \left(733, -19615\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  66978 66978  = 2326122 \cdot 3^{2} \cdot 61^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  169708113145134-169708113145134 = 1233617-1 \cdot 2 \cdot 3^{3} \cdot 61^{7}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  1860867122 -\frac{1860867}{122}  = 12133413611-1 \cdot 2^{-1} \cdot 3^{3} \cdot 41^{3} \cdot 61^{-1}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.48297790590859141240533695761.4829779059085914124053369576
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.84711209834509163481916890334-0.84711209834509163481916890334
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.79538571075886370.7953857107588637
Szpiro ratio: σm\sigma_{m} ≈ 3.82509853156689863.8250985315668986

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.420193779290593336027899431860.42019377929059333602789943186
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.182859182461212809910416464450.18285918246121280991041646445
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 8 8  = 1222 1\cdot2\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 0.614690327650921530993637871990.61469032765092153099363787199
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

0.614690328L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.1828590.4201948120.614690328\displaystyle 0.614690328 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.182859 \cdot 0.420194 \cdot 8}{1^2} \approx 0.614690328

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 66978.2.a.d

qq2+q4q54q7q8+q106q116q13+4q14+q163q176q19+O(q20) q - q^{2} + q^{4} - q^{5} - 4 q^{7} - q^{8} + q^{10} - 6 q^{11} - 6 q^{13} + 4 q^{14} + q^{16} - 3 q^{17} - 6 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 416640
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I1I_{1} nonsplit multiplicative 1 1 1 1
33 22 IIIIII additive 1 2 3 0
6161 44 I1I_{1}^{*} additive 1 2 7 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 1, 1463, 0], [1463, 2, 1462, 3], [1, 0, 2, 1], [1, 2, 0, 1], [977, 2, 977, 3], [367, 2, 0, 1], [673, 2, 673, 3], [733, 2, 733, 3]]
 
GL(2,Integers(1464)).subgroup(gens)
 
Gens := [[1, 1, 1463, 0], [1463, 2, 1462, 3], [1, 0, 2, 1], [1, 2, 0, 1], [977, 2, 977, 3], [367, 2, 0, 1], [673, 2, 673, 3], [733, 2, 733, 3]];
 
sub<GL(2,Integers(1464))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1464=23361 1464 = 2^{3} \cdot 3 \cdot 61 , index 22, genus 00, and generators

(1114630),(1463214623),(1021),(1201),(97729773),(367201),(67326733),(73327333)\left(\begin{array}{rr} 1 & 1 \\ 1463 & 0 \end{array}\right),\left(\begin{array}{rr} 1463 & 2 \\ 1462 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 977 & 2 \\ 977 & 3 \end{array}\right),\left(\begin{array}{rr} 367 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 673 & 2 \\ 673 & 3 \end{array}\right),\left(\begin{array}{rr} 733 & 2 \\ 733 & 3 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1464])K:=\Q(E[1464]) is a degree-501910732800501910732800 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1464Z)\GL_2(\Z/1464\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 11163=3612 11163 = 3 \cdot 61^{2}
33 additive 66 7442=2612 7442 = 2 \cdot 61^{2}
6161 additive 19221922 18=232 18 = 2 \cdot 3^{2}

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 66978a consists of this curve only.

Twists

The minimal quadratic twist of this elliptic curve is 1098a1, its twist by 183-183.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.1464.1 Z/2Z\Z/2\Z not in database
66 6.0.3137785344.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 61
Reduction type nonsplit add ord ord ord ord ord ord ord ss ord ord ss ord ord add
λ\lambda-invariant(s) 4 - 1 1 1 1 1 1 1 1,1 1 1 1,1 1 1 -
μ\mu-invariant(s) 0 - 0 0 0 0 0 0 0 0,0 0 0 0,0 0 0 -

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.