Properties

Label 81225p2
Conductor 8122581225
Discriminant 3.676×1018-3.676\times 10^{18}
j-invariant 884736 -884736
CM yes (D=19D=-19)
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+y=x33086550x+2089208531y^2+y=x^3-3086550x+2089208531 Copy content Toggle raw display (homogenize, simplify)
y2z+yz2=x33086550xz2+2089208531z3y^2z+yz^2=x^3-3086550xz^2+2089208531z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x349384800x+133709346000y^2=x^3-49384800x+133709346000 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 1, -3086550, 2089208531])
 
gp: E = ellinit([0, 0, 1, -3086550, 2089208531])
 
magma: E := EllipticCurve([0, 0, 1, -3086550, 2089208531]);
 
oscar: E = elliptic_curve([0, 0, 1, -3086550, 2089208531])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  81225 81225  = 32521923^{2} \cdot 5^{2} \cdot 19^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  3675614557513921875-3675614557513921875 = 13656199-1 \cdot 3^{6} \cdot 5^{6} \cdot 19^{9}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  884736 -884736  = 121533-1 \cdot 2^{15} \cdot 3^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z[(1+19)/2]\Z[(1+\sqrt{-19})/2]    (potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = N(U(1))N(\mathrm{U}(1))
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.47609593024355043959824056292.4760959302435504395982405629
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.0862584046823849384065322961-1.0862584046823849384065322961
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.31757060291384851.3175706029138485
Szpiro ratio: σm\sigma_{m} ≈ 4.9927780499496134.992778049949613

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.248226760142537718606499637100.24822676014253771860649963710
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 4 4  = 212 2\cdot1\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 0.992907040570150874425998548420.99290704057015087442599854842
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

0.992907041L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.2482271.0000004120.992907041\displaystyle 0.992907041 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.248227 \cdot 1.000000 \cdot 4}{1^2} \approx 0.992907041

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 81225.2.a.s

q2q43q7+5q11+4q167q17+O(q20) q - 2 q^{4} - 3 q^{7} + 5 q^{11} + 4 q^{16} - 7 q^{17} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 1702400
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 22 I0I_0^{*} additive -1 2 6 0
55 11 I0I_0^{*} additive 1 2 6 0
1919 22 IIIIII^{*} additive 1 2 9 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 good 22 4275=325219 4275 = 3^{2} \cdot 5^{2} \cdot 19
33 additive 66 9025=52192 9025 = 5^{2} \cdot 19^{2}
55 additive 1414 3249=32192 3249 = 3^{2} \cdot 19^{2}
1919 additive 110110 225=3252 225 = 3^{2} \cdot 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 19.
Its isogeny class 81225p consists of 2 curves linked by isogenies of degree 19.

Twists

The minimal quadratic twist of this elliptic curve is 361a1, its twist by 285285.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.76.1 Z/2Z\Z/2\Z not in database
66 6.0.109744.2 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 8.2.64305838591875.1 Z/3Z\Z/3\Z not in database
88 8.0.11908488628125.2 Z/5Z\Z/5\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/7Z\Z/7\Z not in database
1616 deg 16 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
1616 deg 16 Z/5Z\Z/5\Z not in database
1818 18.18.210684481487848166847338548828125.1 Z/19Z\Z/19\Z not in database
2020 20.0.20641952354036170203999917480799228515625.1 Z/11Z\Z/11\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ss add add ord ord ss ord add ord ss ss ss ss ord ord
λ\lambda-invariant(s) ? - - 0 0 0,0 0 - 0 0,0 0,0 0,0 0,0 2 0
μ\mu-invariant(s) ? - - 0 0 0,0 0 - 0 0,0 0,0 0,0 0,0 0 0

An entry ? indicates that the invariants have not yet been computed.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.