Show commands:
Magma
magma: G := TransitiveGroup(26, 4);
Group action invariants
Degree $n$: | $26$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $4$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_{13}:C_4$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,3,5,7,9,12,14,16,18,20,22,24,25)(2,4,6,8,10,11,13,15,17,19,21,23,26), (1,10,24,15)(2,9,23,16)(3,19,22,6)(4,20,21,5)(7,13,18,11)(8,14,17,12)(25,26) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 13: $C_{13}:C_4$
Low degree siblings
13T4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{26}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12},1^{2}$ | $13$ | $2$ | $12$ | $( 1,24)( 2,23)( 3,22)( 4,21)( 5,20)( 6,19)( 7,18)( 8,17)( 9,16)(10,15)(11,13)(12,14)$ |
4A1 | $4^{6},2$ | $13$ | $4$ | $19$ | $( 1,15,24,10)( 2,16,23, 9)( 3, 6,22,19)( 4, 5,21,20)( 7,11,18,13)( 8,12,17,14)(25,26)$ |
4A-1 | $4^{6},2$ | $13$ | $4$ | $19$ | $( 1,10,24,15)( 2, 9,23,16)( 3,19,22, 6)( 4,20,21, 5)( 7,13,18,11)( 8,14,17,12)(25,26)$ |
13A1 | $13^{2}$ | $4$ | $13$ | $24$ | $( 1,25,24,22,20,18,16,14,12, 9, 7, 5, 3)( 2,26,23,21,19,17,15,13,11,10, 8, 6, 4)$ |
13A2 | $13^{2}$ | $4$ | $13$ | $24$ | $( 1,24,20,16,12, 7, 3,25,22,18,14, 9, 5)( 2,23,19,15,11, 8, 4,26,21,17,13,10, 6)$ |
13A4 | $13^{2}$ | $4$ | $13$ | $24$ | $( 1,20,12, 3,22,14, 5,24,16, 7,25,18, 9)( 2,19,11, 4,21,13, 6,23,15, 8,26,17,10)$ |
Malle's constant $a(G)$: $1/12$
magma: ConjugacyClasses(G);
Group invariants
Order: | $52=2^{2} \cdot 13$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 52.3 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 4A1 | 4A-1 | 13A1 | 13A2 | 13A4 | ||
Size | 1 | 13 | 13 | 13 | 4 | 4 | 4 | |
2 P | 1A | 1A | 2A | 2A | 13A2 | 13A4 | 13A1 | |
13 P | 1A | 2A | 4A-1 | 4A1 | 13A2 | 13A4 | 13A1 | |
Type | ||||||||
52.3.1a | R | |||||||
52.3.1b | R | |||||||
52.3.1c1 | C | |||||||
52.3.1c2 | C | |||||||
52.3.4a1 | R | |||||||
52.3.4a2 | R | |||||||
52.3.4a3 | R |
magma: CharacterTable(G);