Properties

Label 26T4
26T4 1 3 1->3 10 1->10 2 4 2->4 9 2->9 5 3->5 19 3->19 6 4->6 20 4->20 5->4 7 5->7 6->3 8 6->8 7->9 13 7->13 8->10 14 8->14 12 9->12 23 9->23 11 10->11 24 10->24 11->7 11->13 12->8 12->14 15 13->15 18 13->18 16 14->16 17 14->17 15->1 15->17 16->2 16->18 17->12 17->19 18->11 18->20 21 19->21 22 19->22 20->21 20->22 21->5 21->23 22->6 22->24 23->16 26 23->26 24->15 25 24->25 25->1 25->26 26->2
Degree 2626
Order 5252
Cyclic no
Abelian no
Solvable yes
Primitive no
pp-group no
Group: C13:C4C_{13}:C_4

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(26, 4);
 

Group invariants

Abstract group:  C13:C4C_{13}:C_4
Copy content magma:IdentifyGroup(G);
 
Order:  52=221352=2^{2} \cdot 13
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree nn:  2626
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number tt:  44
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  1-1
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
#Aut(F/K)\card{\Aut(F/K)}:  22
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,3,5,7,9,12,14,16,18,20,22,24,25)(2,4,6,8,10,11,13,15,17,19,21,23,26)(1,3,5,7,9,12,14,16,18,20,22,24,25)(2,4,6,8,10,11,13,15,17,19,21,23,26), (1,10,24,15)(2,9,23,16)(3,19,22,6)(4,20,21,5)(7,13,18,11)(8,14,17,12)(25,26)(1,10,24,15)(2,9,23,16)(3,19,22,6)(4,20,21,5)(7,13,18,11)(8,14,17,12)(25,26)
Copy content magma:Generators(G);
 

Low degree resolvents

#(G/N)\card{(G/N)}Galois groups for stem field(s)
22C2C_2
44C4C_4

Resolvents shown for degrees 47\leq 47

Subfields

Degree 2: C2C_2

Degree 13: C13:C4C_{13}:C_4

Low degree siblings

13T4

Siblings are shown with degree 47\leq 47

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A 1261^{26} 11 11 00 ()()
2A 212,122^{12},1^{2} 1313 22 1212 (1,7)(2,8)(3,5)(4,6)(9,25)(10,26)(11,23)(12,24)(13,21)(14,22)(15,19)(16,20)( 1, 7)( 2, 8)( 3, 5)( 4, 6)( 9,25)(10,26)(11,23)(12,24)(13,21)(14,22)(15,19)(16,20)
4A1 46,24^{6},2 1313 44 1919 (1,19,7,15)(2,20,8,16)(3,10,5,26)(4,9,6,25)(11,22,23,14)(12,21,24,13)(17,18)( 1,19, 7,15)( 2,20, 8,16)( 3,10, 5,26)( 4, 9, 6,25)(11,22,23,14)(12,21,24,13)(17,18)
4A-1 46,24^{6},2 1313 44 1919 (1,15,7,19)(2,16,8,20)(3,26,5,10)(4,25,6,9)(11,14,23,22)(12,13,24,21)(17,18)( 1,15, 7,19)( 2,16, 8,20)( 3,26, 5,10)( 4,25, 6, 9)(11,14,23,22)(12,13,24,21)(17,18)
13A1 13213^{2} 44 1313 2424 (1,25,24,22,20,18,16,14,12,9,7,5,3)(2,26,23,21,19,17,15,13,11,10,8,6,4)( 1,25,24,22,20,18,16,14,12, 9, 7, 5, 3)( 2,26,23,21,19,17,15,13,11,10, 8, 6, 4)
13A2 13213^{2} 44 1313 2424 (1,24,20,16,12,7,3,25,22,18,14,9,5)(2,23,19,15,11,8,4,26,21,17,13,10,6)( 1,24,20,16,12, 7, 3,25,22,18,14, 9, 5)( 2,23,19,15,11, 8, 4,26,21,17,13,10, 6)
13A4 13213^{2} 44 1313 2424 (1,20,12,3,22,14,5,24,16,7,25,18,9)(2,19,11,4,21,13,6,23,15,8,26,17,10)( 1,20,12, 3,22,14, 5,24,16, 7,25,18, 9)( 2,19,11, 4,21,13, 6,23,15, 8,26,17,10)

Malle's constant a(G)a(G):     1/121/12

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 4A1 4A-1 13A1 13A2 13A4
Size 1 13 13 13 4 4 4
2 P 1A 1A 2A 2A 13A2 13A4 13A1
13 P 1A 2A 4A-1 4A1 13A2 13A4 13A1
Type
52.3.1a R 1 1 1 1 1 1 1
52.3.1b R 1 1 1 1 1 1 1
52.3.1c1 C 1 1 i i 1 1 1
52.3.1c2 C 1 1 i i 1 1 1
52.3.4a1 R 4 0 0 0 ζ136+ζ134+ζ134+ζ136 ζ135+ζ131+ζ13+ζ135 ζ133+ζ132+ζ132+ζ133
52.3.4a2 R 4 0 0 0 ζ135+ζ131+ζ13+ζ135 ζ133+ζ132+ζ132+ζ133 ζ136+ζ134+ζ134+ζ136
52.3.4a3 R 4 0 0 0 ζ133+ζ132+ζ132+ζ133 ζ136+ζ134+ζ134+ζ136 ζ135+ζ131+ζ13+ζ135

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed