Properties

Label 26T4
Degree $26$
Order $52$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_{13}:C_4$

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(26, 4);
 

Group action invariants

Degree $n$:  $26$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $4$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $C_{13}:C_4$
Parity:  $-1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $2$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,3,5,7,9,12,14,16,18,20,22,24,25)(2,4,6,8,10,11,13,15,17,19,21,23,26), (1,10,24,15)(2,9,23,16)(3,19,22,6)(4,20,21,5)(7,13,18,11)(8,14,17,12)(25,26)
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$4$:  $C_4$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 13: $C_{13}:C_4$

Low degree siblings

13T4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{26}$ $1$ $1$ $0$ $()$
2A $2^{12},1^{2}$ $13$ $2$ $12$ $( 1,24)( 2,23)( 3,22)( 4,21)( 5,20)( 6,19)( 7,18)( 8,17)( 9,16)(10,15)(11,13)(12,14)$
4A1 $4^{6},2$ $13$ $4$ $19$ $( 1,15,24,10)( 2,16,23, 9)( 3, 6,22,19)( 4, 5,21,20)( 7,11,18,13)( 8,12,17,14)(25,26)$
4A-1 $4^{6},2$ $13$ $4$ $19$ $( 1,10,24,15)( 2, 9,23,16)( 3,19,22, 6)( 4,20,21, 5)( 7,13,18,11)( 8,14,17,12)(25,26)$
13A1 $13^{2}$ $4$ $13$ $24$ $( 1,25,24,22,20,18,16,14,12, 9, 7, 5, 3)( 2,26,23,21,19,17,15,13,11,10, 8, 6, 4)$
13A2 $13^{2}$ $4$ $13$ $24$ $( 1,24,20,16,12, 7, 3,25,22,18,14, 9, 5)( 2,23,19,15,11, 8, 4,26,21,17,13,10, 6)$
13A4 $13^{2}$ $4$ $13$ $24$ $( 1,20,12, 3,22,14, 5,24,16, 7,25,18, 9)( 2,19,11, 4,21,13, 6,23,15, 8,26,17,10)$

Malle's constant $a(G)$:     $1/12$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $52=2^{2} \cdot 13$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  52.3
magma: IdentifyGroup(G);
 
Character table:

1A 2A 4A1 4A-1 13A1 13A2 13A4
Size 1 13 13 13 4 4 4
2 P 1A 1A 2A 2A 13A2 13A4 13A1
13 P 1A 2A 4A-1 4A1 13A2 13A4 13A1
Type
52.3.1a R 1 1 1 1 1 1 1
52.3.1b R 1 1 1 1 1 1 1
52.3.1c1 C 1 1 i i 1 1 1
52.3.1c2 C 1 1 i i 1 1 1
52.3.4a1 R 4 0 0 0 ζ136+ζ134+ζ134+ζ136 ζ135+ζ131+ζ13+ζ135 ζ133+ζ132+ζ132+ζ133
52.3.4a2 R 4 0 0 0 ζ135+ζ131+ζ13+ζ135 ζ133+ζ132+ζ132+ζ133 ζ136+ζ134+ζ134+ζ136
52.3.4a3 R 4 0 0 0 ζ133+ζ132+ζ132+ζ133 ζ136+ζ134+ζ134+ζ136 ζ135+ζ131+ζ13+ζ135

magma: CharacterTable(G);