Refine search
Label | Name | Order | Parity | Solvable | Subfields | Low Degree Siblings |
---|---|---|---|---|---|---|
26T1 | $C_{26}$ | $26$ | $-1$ | ✓ | $C_2$, $C_{13}$ | |
26T2 | $D_{13}$ | $26$ | $-1$ | ✓ | $C_2$, $D_{13}$ | 13T2 |
26T3 | $D_{26}$ | $52$ | $-1$ | ✓ | $C_2$, $D_{13}$ | 26T3 |
26T4 | $C_{13}:C_4$ | $52$ | $-1$ | ✓ | $C_2$, $C_{13}:C_4$ | 13T4 |
26T5 | $C_{13}:C_6$ | $78$ | $-1$ | ✓ | $C_2$, $C_{13}:C_3$ | |
26T6 | $C_{13}:C_6$ | $78$ | $-1$ | ✓ | $C_2$, $C_{13}:C_6$ | 13T5, 39T6 |
26T7 | $C_{26}:C_4$ | $104$ | $-1$ | ✓ | $C_2$, $C_{13}:C_4$ | 26T7 |
26T8 | $F_{13}$ | $156$ | $-1$ | ✓ | $C_2$, $F_{13}$ | 13T6, 39T11 |
26T9 | $C_{26}:C_6$ | $156$ | $-1$ | ✓ | $C_2$, $C_{13}:C_6$ | 26T9 |
26T10 | $C_2\times F_{13}$ | $312$ | $-1$ | ✓ | $C_2$, $F_{13}$ | 26T10 |
26T11 | $C_{13}\times D_{13}$ | $338$ | $-1$ | ✓ | $C_2$ | 26T11 x 5 |
26T12 | $C_{13}^2:C_4$ | $676$ | $-1$ | ✓ | $C_2$ | 26T12 x 5 |
26T13 | $D_{13}^2$ | $676$ | $-1$ | ✓ | $C_2$ | 26T13 x 5 |
26T14 | $C_{13}^2:S_3$ | $1014$ | $-1$ | ✓ | $C_2$ | 39T26, 39T27 |
26T15 | $C_{13}^2:C_6$ | $1014$ | $-1$ | ✓ | $C_2$ | 26T15 x 5 |
26T16 | $D_{13}\wr C_2$ | $1352$ | $-1$ | ✓ | $C_2$ | 26T16, 26T19 |
26T17 | $C_{13}^2:Q_8$ | $1352$ | $-1$ | ✓ | $C_2$ | 26T17 x 2 |
26T18 | $D_{13}^2.C_2$ | $1352$ | $-1$ | ✓ | $C_2$ | 26T18 x 5 |
26T19 | $D_{13}\wr C_2$ | $1352$ | $-1$ | ✓ | $C_2$ | 26T16 x 2 |
26T20 | $C_{13}^2:C_8$ | $1352$ | $1$ | ✓ | $C_2$ | 26T20 x 6 |
26T21 | $C_{13}:F_{13}$ | $2028$ | $-1$ | ✓ | $C_2$ | 26T21 x 5 |
26T22 | $D_{13}^2:C_3$ | $2028$ | $-1$ | ✓ | $C_2$ | 26T22 x 5 |
26T23 | $C_{13}^2:D_6$ | $2028$ | $-1$ | ✓ | $C_2$ | 39T34 x 2 |
26T24 | $C_{13}^2:C_3:C_4$ | $2028$ | $-1$ | ✓ | $C_2$ | 39T35 x 2 |
26T25 | $D_{13}^2.C_2^2$ | $2704$ | $-1$ | ✓ | $C_2$ | 26T25 x 2 |
26T26 | $C_{13}^2:\OD_{16}$ | $2704$ | $1$ | ✓ | $C_2$ | |
26T27 | $C_{13}^2:(C_3\times S_3)$ | $3042$ | $-1$ | ✓ | $C_2$ | 39T39, 39T40 |
26T28 | $D_{13}^2:S_3$ | $4056$ | $-1$ | ✓ | $C_2$ | |
26T29 | $C_{13}^2:C_{24}$ | $4056$ | $1$ | ✓ | $C_2$ | 26T29 x 6 |
26T30 | $C_{13}^2:(C_4\times S_3)$ | $4056$ | $-1$ | ✓ | $C_2$ | 39T42 x 2 |
26T31 | $C_{13}^2:C_3:C_8$ | $4056$ | $1$ | ✓ | $C_2$ | |
26T32 | $D_{13}^2:C_6$ | $4056$ | $-1$ | ✓ | $C_2$ | 26T32, 26T37 |
26T33 | $D_{13}:F_{13}$ | $4056$ | $-1$ | ✓ | $C_2$ | 26T33 x 5 |
26T34 | $C_{13}^2:(C_3\times Q_8)$ | $4056$ | $-1$ | ✓ | $C_2$ | 26T34 x 2 |
26T35 | $C_{13}^2:C_3:Q_8$ | $4056$ | $-1$ | ✓ | $C_2$ | |
26T36 | $C_{13}^2:D_{12}$ | $4056$ | $-1$ | ✓ | $C_2$ | |
26T37 | $D_{13}^2:C_6$ | $4056$ | $-1$ | ✓ | $C_2$ | 26T32 x 2 |
26T38 | $D_{13}^2.D_4$ | $5408$ | $-1$ | ✓ | $C_2$ | |
26T39 | $\PSL(3,3)$ | $5616$ | $1$ | $\PSL(3,3)$ | 13T7 x 2, 26T39, 39T43 x 2 | |
26T40 | $C_{13}^2:(C_6\times S_3)$ | $6084$ | $-1$ | ✓ | $C_2$ | 39T46 x 2 |
26T41 | $C_{13}^2:C_3:C_{12}$ | $6084$ | $-1$ | ✓ | $C_2$ | 39T45 x 2 |
26T42 | $\PSL(2,25)$ | $7800$ | $1$ | |||
26T43 | $D_{13}\wr C_2:C_6$ | $8112$ | $-1$ | ✓ | $C_2$ | 26T43 x 2 |
26T44 | $C_{13}^2:C_3:\OD_{16}$ | $8112$ | $1$ | ✓ | $C_2$ | |
26T45 | $D_{13}^2.C_{12}$ | $8112$ | $1$ | ✓ | $C_2$ | |
26T46 | $D_{13}^2.D_6$ | $8112$ | $-1$ | ✓ | $C_2$ | |
26T47 | $\GL(3,3)$ | $11232$ | $-1$ | $\PSL(3,3)$ | 26T47, 26T48 x 2 | |
26T48 | $\GL(3,3)$ | $11232$ | $-1$ | $C_2$, $\PSL(3,3)$ | 26T47 x 2, 26T48 | |
26T49 | $\SL(3,3):C_2$ | $11232$ | $-1$ | $C_2$ | ||
26T50 | $C_{13}^2:C_3^2:Q_8$ | $12168$ | $-1$ | ✓ | $C_2$ |
Results are complete for degrees $\leq 23$.