y2+y=x5+2x4+x3−2x2 |
(homogenize, simplify) |
y2+z3y=x5z+2x4z2+x3z3−2x2z4 |
(dehomogenize, simplify) |
y2=4x5+8x4+4x3−8x2+1 |
(homogenize, minimize) |
sage:R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 0, -2, 1, 2, 1]), R([1]));
magma:R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 0, -2, 1, 2, 1], R![1]);
sage:X = HyperellipticCurve(R([1, 0, -8, 4, 8, 4]))
magma:X,pi:= SimplifiedModel(C);
Conductor: | N | = | 10023 | = | 3⋅13⋅257 |
magma:Conductor(LSeries(C)); Factorization($1);
|
Discriminant: | Δ | = | 30069 | = | 32⋅13⋅257 |
magma:Discriminant(C); Factorization(Integers()!$1);
|
I2 | = | 280 | = |
23⋅5⋅7 |
I4 | = | −2048 | = |
−211 |
I6 | = | −91928 | = |
−23⋅11491 |
I10 | = | 120276 | = |
22⋅32⋅13⋅257 |
J2 | = | 140 | = |
22⋅5⋅7 |
J4 | = | 1158 | = |
2⋅3⋅193 |
J6 | = | 3292 | = |
22⋅823 |
J8 | = | −220021 | = |
−220021 |
J10 | = | 30069 | = |
32⋅13⋅257 |
g1 | = | 53782400000/30069 |
g2 | = | 1059184000/10023 |
g3 | = | 64523200/30069 |
sage:C.igusa_clebsch_invariants(); [factor(a) for a in _]
magma:IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
Aut(X) | ≃ |
C2 |
magma:AutomorphismGroup(C); IdentifyGroup($1);
|
Aut(XQ) | ≃ |
C2 |
magma:AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
All points:
(1:0:0),(0:0:1),(0:−1:1),(1:1:1),(1:−2:1)
All points:
(1:0:0),(0:0:1),(0:−1:1),(1:1:1),(1:−2:1)
All points:
(1:0:0),(0:−1:1),(0:1:1),(1:−3:1),(1:3:1)
magma:[C![0,-1,1],C![0,0,1],C![1,-2,1],C![1,0,0],C![1,1,1]]; // minimal model
magma:[C![0,-1,1],C![0,1,1],C![1,-3,1],C![1,0,0],C![1,3,1]]; // simplified model
Number of rational Weierstrass points: 1
magma:#Roots(HyperellipticPolynomials(SimplifiedModel(C)));
This curve is locally solvable everywhere.
magma:f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
Group structure: Z
magma:MordellWeilGroupGenus2(Jacobian(C));
Generator |
D0 |
|
|
|
|
|
Height |
Order |
(0:−1:1)+(1:1:1)−2⋅(1:0:0) |
x(x−z) |
= |
0, |
y |
= |
2xz2−z3 |
0.027383 |
∞ |
Generator |
D0 |
|
|
|
|
|
Height |
Order |
(0:−1:1)+(1:1:1)−2⋅(1:0:0) |
x(x−z) |
= |
0, |
y |
= |
2xz2−z3 |
0.027383 |
∞ |
Generator |
D0 |
|
|
|
|
|
Height |
Order |
(0:−1:1)+(1:3:1)−2⋅(1:0:0) |
x(x−z) |
= |
0, |
y |
= |
4xz2−z3 |
0.027383 |
∞ |
2-torsion field: 5.1.53456.1
The mod-ℓ Galois representation
has maximal image GSp(4,Fℓ)
for all primes ℓ
except those listed.
Simple over Q
magma:HeuristicDecompositionFactors(C);
Not of GL2-type over Q
Endomorphism ring over Q:
End(J) | ≃ | Z |
End(J)⊗Q | ≃ | Q |
End(J)⊗R | ≃ | R |
All Q-endomorphisms of the Jacobian are defined over Q.
magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
magma:HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
magma:HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);