Properties

Label 102400.b.102400.1
Conductor 102400102400
Discriminant 102400-102400
Mordell-Weil group ZZ/2Z\Z \oplus \Z/{2}\Z
Sato-Tate group J(E2)J(E_2)
End(JQ)R\End(J_{\overline{\Q}}) \otimes \R M2(R)\mathrm{M}_2(\R)
End(JQ)Q\End(J_{\overline{\Q}}) \otimes \Q M2(Q)\mathrm{M}_2(\Q)
End(J)Q\End(J) \otimes \Q Q\Q
Q\overline{\Q}-simple no
GL2\mathrm{GL}_2-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

y2=x5x3xy^2 = x^5 - x^3 - x (homogenize, simplify)
y2=x5zx3z3xz5y^2 = x^5z - x^3z^3 - xz^5 (dehomogenize, simplify)
y2=x5x3xy^2 = x^5 - x^3 - x (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, 0, -1, 0, 1]), R([]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, 0, -1, 0, 1], R![]);
 
sage: X = HyperellipticCurve(R([0, -1, 0, -1, 0, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: N N  ==  102400102400 == 21252 2^{12} \cdot 5^{2}
magma: Conductor(LSeries(C: ExcFactors:=[*<2,Valuation(102400,2),R![1]>*])); Factorization($1);
 
Discriminant: Δ \Delta  ==  102400-102400 == 21252 - 2^{12} \cdot 5^{2}
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

I2 I_2  == 3434 ==  217 2 \cdot 17
I4 I_4  == 116-116 ==  2229 - 2^{2} \cdot 29
I6 I_6  == 424-424 ==  2353 - 2^{3} \cdot 53
I10 I_{10}  == 400400 ==  2452 2^{4} \cdot 5^{2}
J2 J_2  == 6868 ==  2217 2^{2} \cdot 17
J4 J_4  == 502502 ==  2251 2 \cdot 251
J6 J_6  == 2100-2100 ==  223527 - 2^{2} \cdot 3 \cdot 5^{2} \cdot 7
J8 J_8  == 98701-98701 ==  891109 - 89 \cdot 1109
J10 J_{10}  == 102400102400 ==  21252 2^{12} \cdot 5^{2}
g1 g_1  == 1419857/1001419857/100
g2 g_2  == 1233163/8001233163/800
g3 g_3  == 6069/64-6069/64

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

Aut(X)\mathrm{Aut}(X)\simeq C2C_2
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
Aut(XQ)\mathrm{Aut}(X_{\overline{\Q}})\simeq D4D_4
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: (1:0:0),(0:0:1),(1:1:1),(1:1:1)(1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : -1 : 1),\, (-1 : 1 : 1)
All points: (1:0:0),(0:0:1),(1:1:1),(1:1:1)(1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : -1 : 1),\, (-1 : 1 : 1)
All points: (1:0:0),(0:0:1),(1:1/2:1),(1:1/2:1)(1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : -1/2 : 1),\, (-1 : 1/2 : 1)

magma: [C![-1,-1,1],C![-1,1,1],C![0,0,1],C![1,0,0]]; // minimal model
 
magma: [C![-1,-1/2,1],C![-1,1/2,1],C![0,0,1],C![1,0,0]]; // simplified model
 

Number of rational Weierstrass points: 22

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator D0D_0 Height Order
(1:1:1)(1:0:0)(-1 : -1 : 1) - (1 : 0 : 0) x+zx + z == 0,0, yy == z3-z^3 0.7972800.797280 \infty
(0:0:1)(1:0:0)(0 : 0 : 1) - (1 : 0 : 0) xx == 0,0, yy == 00 00 22
Generator D0D_0 Height Order
(1:1:1)(1:0:0)(-1 : -1 : 1) - (1 : 0 : 0) x+zx + z == 0,0, yy == z3-z^3 0.7972800.797280 \infty
(0:0:1)(1:0:0)(0 : 0 : 1) - (1 : 0 : 0) xx == 0,0, yy == 00 00 22
Generator D0D_0 Height Order
(1:1/2:1)(1:0:0)(-1 : -1/2 : 1) - (1 : 0 : 0) x+zx + z == 0,0, yy == 1/2z3-1/2z^3 0.7972800.797280 \infty
(0:0:1)(1:0:0)(0 : 0 : 1) - (1 : 0 : 0) xx == 0,0, yy == 00 00 22

2-torsion field: 4.0.320.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: 11
Mordell-Weil rank: 11
2-Selmer rank:22
Regulator: 0.797280 0.797280
Real period: 12.08406 12.08406
Tamagawa product: 1 1
Torsion order:2 2
Leading coefficient: 2.408595 2.408595
Analytic order of Ш: 1 1   (rounded)
Order of Ш:square

Local invariants

Prime ord(NN) ord(Δ\Delta) Tamagawa L-factor Cluster picture
22 1212 1212 11 11
55 22 22 11 1+T21 + T^{2}

Galois representations

For primes 5\ell \ge 5 the Galois representation data has not been computed for this curve since it is not generic.

For primes 3\ell \le 3, the image of the mod-\ell Galois representation is listed in the table below, whenever it is not all of GSp(4,F)\GSp(4,\F_\ell).

Prime \ell mod-\ell image Is torsion prime?
22 2.90.3 yes
33 3.540.2 no

Sato-Tate group

ST\mathrm{ST}\simeq J(E2)J(E_2)
ST0\mathrm{ST}^0\simeq SU(2)\mathrm{SU}(2)

Decomposition of the Jacobian

Splits over the number field Q(b)\Q (b) \simeq Q(ζ8)\Q(\zeta_{8}) with defining polynomial:
  x4+1x^{4} + 1

Decomposes up to isogeny as the square of the elliptic curve isogeny class:
  y2=x3g4/48xg6/864y^2 = x^3 - g_4 / 48 x - g_6 / 864 with
  g4=160b248g_4 = 160 b^{2} - 48
  g6=1792b31152bg_6 = 1792 b^{3} - 1152 b
   Conductor norm: 160000

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of GL2\GL_2-type over Q\Q

Endomorphism ring over Q\Q:

End(J)\End (J_{})\simeqZ\Z
End(J)Q\End (J_{}) \otimes \Q \simeqQ\Q
End(J)R\End (J_{}) \otimes \R\simeq R\R

Smallest field over which all endomorphisms are defined:
Galois number field K=Q(a)K = \Q (a) \simeq Q(ζ8)\Q(\zeta_{8}) with defining polynomial x4+1x^{4} + 1

Not of GL2\GL_2-type over Q\overline{\Q}

Endomorphism ring over Q\overline{\Q}:

End(JQ)\End (J_{\overline{\Q}})\simeqa non-Eichler order of index 44 in a maximal order of End(JQ)Q\End (J_{\overline{\Q}}) \otimes \Q
End(JQ)Q\End (J_{\overline{\Q}}) \otimes \Q \simeqM2(\mathrm{M}_2(Q\Q))
End(JQ)R\End (J_{\overline{\Q}}) \otimes \R\simeq M2(R)\mathrm{M}_2 (\R)

Remainder of the endomorphism lattice by field

Over subfield FF \simeq Q(2)\Q(\sqrt{-2}) with generator a3a-a^{3} - a with minimal polynomial x2+2x^{2} + 2:

End(JF)\End (J_{F})\simeqZ[2]\Z [\sqrt{2}]
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ(2)\Q(\sqrt{2})
End(JF)R\End (J_{F}) \otimes \R\simeq R×R\R \times \R
  Sato Tate group: J(E1)J(E_1)
  Of GL2\GL_2-type, simple

Over subfield FF \simeq Q(2)\Q(\sqrt{2}) with generator a3aa^{3} - a with minimal polynomial x22x^{2} - 2:

End(JF)\End (J_{F})\simeqZ[2]\Z [\sqrt{2}]
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ(2)\Q(\sqrt{2})
End(JF)R\End (J_{F}) \otimes \R\simeq R×R\R \times \R
  Sato Tate group: J(E1)J(E_1)
  Of GL2\GL_2-type, simple

Over subfield FF \simeq Q(1)\Q(\sqrt{-1}) with generator a2-a^{2} with minimal polynomial x2+1x^{2} + 1:

End(JF)\End (J_{F})\simeqZ[1]\Z [\sqrt{-1}]
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ(1)\Q(\sqrt{-1})
End(JF)R\End (J_{F}) \otimes \R\simeq C\C
  Sato Tate group: E2E_2
  Of GL2\GL_2-type, simple

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);