sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, 0, -1, 0, 1]), R([]));
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, 0, -1, 0, 1], R![]);
sage: X = HyperellipticCurve(R([0, -1, 0, -1, 0, 1]))
magma: X,pi:= SimplifiedModel(C);
Conductor : N N N = = = 102400 102400 1 0 2 4 0 0 = = = 2 12 ⋅ 5 2 2^{12} \cdot 5^{2} 2 1 2 ⋅ 5 2
magma: Conductor(LSeries(C: ExcFactors:=[*<2,Valuation(102400,2),R![1]>*])); Factorization($1);
Discriminant : Δ \Delta Δ = = = − 102400 -102400 − 1 0 2 4 0 0 = = = − 2 12 ⋅ 5 2 - 2^{12} \cdot 5^{2} − 2 1 2 ⋅ 5 2
magma: Discriminant(C); Factorization(Integers()!$1);
I 2 I_2 I 2 = = = 34 34 3 4 = = =
2 ⋅ 17 2 \cdot 17 2 ⋅ 1 7
I 4 I_4 I 4 = = = − 116 -116 − 1 1 6 = = =
− 2 2 ⋅ 29 - 2^{2} \cdot 29 − 2 2 ⋅ 2 9
I 6 I_6 I 6 = = = − 424 -424 − 4 2 4 = = =
− 2 3 ⋅ 53 - 2^{3} \cdot 53 − 2 3 ⋅ 5 3
I 10 I_{10} I 1 0 = = = 400 400 4 0 0 = = =
2 4 ⋅ 5 2 2^{4} \cdot 5^{2} 2 4 ⋅ 5 2
J 2 J_2 J 2 = = = 68 68 6 8 = = =
2 2 ⋅ 17 2^{2} \cdot 17 2 2 ⋅ 1 7
J 4 J_4 J 4 = = = 502 502 5 0 2 = = =
2 ⋅ 251 2 \cdot 251 2 ⋅ 2 5 1
J 6 J_6 J 6 = = = − 2100 -2100 − 2 1 0 0 = = =
− 2 2 ⋅ 3 ⋅ 5 2 ⋅ 7 - 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 − 2 2 ⋅ 3 ⋅ 5 2 ⋅ 7
J 8 J_8 J 8 = = = − 98701 -98701 − 9 8 7 0 1 = = =
− 89 ⋅ 1109 - 89 \cdot 1109 − 8 9 ⋅ 1 1 0 9
J 10 J_{10} J 1 0 = = = 102400 102400 1 0 2 4 0 0 = = =
2 12 ⋅ 5 2 2^{12} \cdot 5^{2} 2 1 2 ⋅ 5 2
g 1 g_1 g 1 = = = 1419857 / 100 1419857/100 1 4 1 9 8 5 7 / 1 0 0
g 2 g_2 g 2 = = = 1233163 / 800 1233163/800 1 2 3 3 1 6 3 / 8 0 0
g 3 g_3 g 3 = = = − 6069 / 64 -6069/64 − 6 0 6 9 / 6 4
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
A u t ( X ) \mathrm{Aut}(X) A u t ( X ) ≃ \simeq ≃
C 2 C_2 C 2
magma: AutomorphismGroup(C); IdentifyGroup($1);
A u t ( X Q ‾ ) \mathrm{Aut}(X_{\overline{\Q}}) A u t ( X Q ) ≃ \simeq ≃
D 4 D_4 D 4
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
All points :
( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( − 1 : − 1 : 1 ) , ( − 1 : 1 : 1 ) (1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : -1 : 1),\, (-1 : 1 : 1) ( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( − 1 : − 1 : 1 ) , ( − 1 : 1 : 1 )
All points :
( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( − 1 : − 1 : 1 ) , ( − 1 : 1 : 1 ) (1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : -1 : 1),\, (-1 : 1 : 1) ( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( − 1 : − 1 : 1 ) , ( − 1 : 1 : 1 )
All points :
( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( − 1 : − 1 / 2 : 1 ) , ( − 1 : 1 / 2 : 1 ) (1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : -1/2 : 1),\, (-1 : 1/2 : 1) ( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( − 1 : − 1 / 2 : 1 ) , ( − 1 : 1 / 2 : 1 )
magma: [C![-1,-1,1],C![-1,1,1],C![0,0,1],C![1,0,0]]; // minimal model
magma: [C![-1,-1/2,1],C![-1,1/2,1],C![0,0,1],C![1,0,0]]; // simplified model
Number of rational Weierstrass points : 2 2 2
magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
This curve is locally solvable everywhere.
magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
Group structure : Z ⊕ Z / 2 Z \Z \oplus \Z/{2}\Z Z ⊕ Z / 2 Z
magma: MordellWeilGroupGenus2(Jacobian(C));
Generator
D 0 D_0 D 0
Height
Order
( − 1 : − 1 : 1 ) − ( 1 : 0 : 0 ) (-1 : -1 : 1) - (1 : 0 : 0) ( − 1 : − 1 : 1 ) − ( 1 : 0 : 0 )
x + z x + z x + z
= = =
0 , 0, 0 ,
y y y
= = =
− z 3 -z^3 − z 3
0.797280 0.797280 0 . 7 9 7 2 8 0
∞ \infty ∞
( 0 : 0 : 1 ) − ( 1 : 0 : 0 ) (0 : 0 : 1) - (1 : 0 : 0) ( 0 : 0 : 1 ) − ( 1 : 0 : 0 )
x x x
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
Generator
D 0 D_0 D 0
Height
Order
( − 1 : − 1 : 1 ) − ( 1 : 0 : 0 ) (-1 : -1 : 1) - (1 : 0 : 0) ( − 1 : − 1 : 1 ) − ( 1 : 0 : 0 )
x + z x + z x + z
= = =
0 , 0, 0 ,
y y y
= = =
− z 3 -z^3 − z 3
0.797280 0.797280 0 . 7 9 7 2 8 0
∞ \infty ∞
( 0 : 0 : 1 ) − ( 1 : 0 : 0 ) (0 : 0 : 1) - (1 : 0 : 0) ( 0 : 0 : 1 ) − ( 1 : 0 : 0 )
x x x
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
Generator
D 0 D_0 D 0
Height
Order
( − 1 : − 1 / 2 : 1 ) − ( 1 : 0 : 0 ) (-1 : -1/2 : 1) - (1 : 0 : 0) ( − 1 : − 1 / 2 : 1 ) − ( 1 : 0 : 0 )
x + z x + z x + z
= = =
0 , 0, 0 ,
y y y
= = =
− 1 / 2 z 3 -1/2z^3 − 1 / 2 z 3
0.797280 0.797280 0 . 7 9 7 2 8 0
∞ \infty ∞
( 0 : 0 : 1 ) − ( 1 : 0 : 0 ) (0 : 0 : 1) - (1 : 0 : 0) ( 0 : 0 : 1 ) − ( 1 : 0 : 0 )
x x x
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
2-torsion field : 4.0.320.1
For primes ℓ ≥ 5 \ell \ge 5 ℓ ≥ 5 the Galois representation data has not been computed for this curve since it is not generic.
For primes ℓ ≤ 3 \ell \le 3 ℓ ≤ 3 , the image of the mod-ℓ \ell ℓ Galois representation is listed in the table below, whenever it is not all of GSp ( 4 , F ℓ ) \GSp(4,\F_\ell) GSp ( 4 , F ℓ ) .
S T \mathrm{ST} S T ≃ \simeq ≃ J ( E 2 ) J(E_2) J ( E 2 )
S T 0 \mathrm{ST}^0 S T 0 ≃ \simeq ≃ S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Splits over the number field Q ( b ) ≃ \Q (b) \simeq Q ( b ) ≃ Q ( ζ 8 ) \Q(\zeta_{8}) Q ( ζ 8 ) with defining polynomial: x 4 + 1 x^{4} + 1 x 4 + 1
Decomposes up to isogeny as the square of the elliptic curve isogeny class: y 2 = x 3 − g 4 / 48 x − g 6 / 864 y^2 = x^3 - g_4 / 48 x - g_6 / 864 y 2 = x 3 − g 4 / 4 8 x − g 6 / 8 6 4 with g 4 = 160 b 2 − 48 g_4 = 160 b^{2} - 48 g 4 = 1 6 0 b 2 − 4 8 g 6 = 1792 b 3 − 1152 b g_6 = 1792 b^{3} - 1152 b g 6 = 1 7 9 2 b 3 − 1 1 5 2 b Conductor norm: 160000
magma: HeuristicDecompositionFactors(C);
Not of GL 2 \GL_2 GL 2 -type over Q \Q Q
Endomorphism ring over Q \Q Q :
End ( J ) \End (J_{}) E n d ( J ) ≃ \simeq ≃ Z \Z Z End ( J ) ⊗ Q \End (J_{}) \otimes \Q E n d ( J ) ⊗ Q ≃ \simeq ≃ Q \Q Q End ( J ) ⊗ R \End (J_{}) \otimes \R E n d ( J ) ⊗ R ≃ \simeq ≃ R \R R
Smallest field over which all endomorphisms are defined:
Galois number field K = Q ( a ) ≃ K = \Q (a) \simeq K = Q ( a ) ≃ Q ( ζ 8 ) \Q(\zeta_{8}) Q ( ζ 8 ) with defining polynomial x 4 + 1 x^{4} + 1 x 4 + 1
Not of GL 2 \GL_2 GL 2 -type over Q ‾ \overline{\Q} Q
Endomorphism ring over Q ‾ \overline{\Q} Q :
End ( J Q ‾ ) \End (J_{\overline{\Q}}) E n d ( J Q ) ≃ \simeq ≃ a non-Eichler order of index 4 4 4 in a maximal order of End ( J Q ‾ ) ⊗ Q \End (J_{\overline{\Q}}) \otimes \Q E n d ( J Q ) ⊗ Q End ( J Q ‾ ) ⊗ Q \End (J_{\overline{\Q}}) \otimes \Q E n d ( J Q ) ⊗ Q ≃ \simeq ≃ M 2 ( \mathrm{M}_2( M 2 ( Q \Q Q ) ) ) End ( J Q ‾ ) ⊗ R \End (J_{\overline{\Q}}) \otimes \R E n d ( J Q ) ⊗ R ≃ \simeq ≃ M 2 ( R ) \mathrm{M}_2 (\R) M 2 ( R )
Over subfield F ≃ F \simeq F ≃ Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 ) with generator − a 3 − a -a^{3} - a − a 3 − a with minimal polynomial x 2 + 2 x^{2} + 2 x 2 + 2 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ Z [ 2 ] \Z [\sqrt{2}] Z [ 2 ] End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q ( 2 ) \Q(\sqrt{2}) Q ( 2 ) End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ R × R \R \times \R R × R
Sato Tate group:
J ( E 1 ) J(E_1) J ( E 1 ) Of
GL 2 \GL_2 GL 2 -type, simple
Over subfield F ≃ F \simeq F ≃ Q ( 2 ) \Q(\sqrt{2}) Q ( 2 ) with generator a 3 − a a^{3} - a a 3 − a with minimal polynomial x 2 − 2 x^{2} - 2 x 2 − 2 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ Z [ 2 ] \Z [\sqrt{2}] Z [ 2 ] End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q ( 2 ) \Q(\sqrt{2}) Q ( 2 ) End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ R × R \R \times \R R × R
Sato Tate group:
J ( E 1 ) J(E_1) J ( E 1 ) Of
GL 2 \GL_2 GL 2 -type, simple
Over subfield F ≃ F \simeq F ≃ Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 ) with generator − a 2 -a^{2} − a 2 with minimal polynomial x 2 + 1 x^{2} + 1 x 2 + 1 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ Z [ − 1 ] \Z [\sqrt{-1}] Z [ − 1 ] End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 ) End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ C \C C
Sato Tate group:
E 2 E_2 E 2 Of
GL 2 \GL_2 GL 2 -type, simple
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);