Minimal equation
Minimal equation
Simplified equation
$y^2 = x^5 - x^3 - x$ | (homogenize, simplify) |
$y^2 = x^5z - x^3z^3 - xz^5$ | (dehomogenize, simplify) |
$y^2 = x^5 - x^3 - x$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(102400\) | \(=\) | \( 2^{12} \cdot 5^{2} \) | magma: Conductor(LSeries(C: ExcFactors:=[*<2,Valuation(102400,2),R![1]>*])); Factorization($1);
|
Discriminant: | \( \Delta \) | \(=\) | \(-102400\) | \(=\) | \( - 2^{12} \cdot 5^{2} \) | magma: Discriminant(C); Factorization(Integers()!$1);
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(34\) | \(=\) | \( 2 \cdot 17 \) |
\( I_4 \) | \(=\) | \(-116\) | \(=\) | \( - 2^{2} \cdot 29 \) |
\( I_6 \) | \(=\) | \(-424\) | \(=\) | \( - 2^{3} \cdot 53 \) |
\( I_{10} \) | \(=\) | \(400\) | \(=\) | \( 2^{4} \cdot 5^{2} \) |
\( J_2 \) | \(=\) | \(68\) | \(=\) | \( 2^{2} \cdot 17 \) |
\( J_4 \) | \(=\) | \(502\) | \(=\) | \( 2 \cdot 251 \) |
\( J_6 \) | \(=\) | \(-2100\) | \(=\) | \( - 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \) |
\( J_8 \) | \(=\) | \(-98701\) | \(=\) | \( - 89 \cdot 1109 \) |
\( J_{10} \) | \(=\) | \(102400\) | \(=\) | \( 2^{12} \cdot 5^{2} \) |
\( g_1 \) | \(=\) | \(1419857/100\) | ||
\( g_2 \) | \(=\) | \(1233163/800\) | ||
\( g_3 \) | \(=\) | \(-6069/64\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ | magma: AutomorphismGroup(C); IdentifyGroup($1);
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $D_4$ | magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
Rational points
Number of rational Weierstrass points: \(2\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z \oplus \Z/{2}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((-1 : -1 : 1) - (1 : 0 : 0)\) | \(x + z\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0.797280\) | \(\infty\) |
\((0 : 0 : 1) - (1 : 0 : 0)\) | \(x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((-1 : -1 : 1) - (1 : 0 : 0)\) | \(x + z\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0.797280\) | \(\infty\) |
\((0 : 0 : 1) - (1 : 0 : 0)\) | \(x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((-1 : -1/2 : 1) - (1 : 0 : 0)\) | \(x + z\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-1/2z^3\) | \(0.797280\) | \(\infty\) |
\((0 : 0 : 1) - (1 : 0 : 0)\) | \(x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
BSD invariants
Hasse-Weil conjecture: | unverified |
Analytic rank: | \(1\) |
Mordell-Weil rank: | \(1\) |
2-Selmer rank: | \(2\) |
Regulator: | \( 0.797280 \) |
Real period: | \( 12.08406 \) |
Tamagawa product: | \( 1 \) |
Torsion order: | \( 2 \) |
Leading coefficient: | \( 2.408595 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | L-factor | Cluster picture |
---|---|---|---|---|---|
\(2\) | \(12\) | \(12\) | \(1\) | \(1\) | |
\(5\) | \(2\) | \(2\) | \(1\) | \(1 + T^{2}\) |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.90.3 | yes |
\(3\) | 3.540.2 | no |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $J(E_2)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Splits over the number field \(\Q (b) \simeq \) \(\Q(\zeta_{8})\) with defining polynomial:
\(x^{4} + 1\)
Decomposes up to isogeny as the square of the elliptic curve isogeny class:
\(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
\(g_4 = 160 b^{2} - 48\)
\(g_6 = 1792 b^{3} - 1152 b\)
Conductor norm: 160000
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | \(\Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) \(\Q(\zeta_{8})\) with defining polynomial \(x^{4} + 1\)
Not of \(\GL_2\)-type over \(\overline{\Q}\)
Endomorphism ring over \(\overline{\Q}\):
\(\End (J_{\overline{\Q}})\) | \(\simeq\) | a non-Eichler order of index \(4\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\) |
\(\End (J_{\overline{\Q}}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
\(\End (J_{\overline{\Q}}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
Remainder of the endomorphism lattice by field
Over subfield \(F \simeq \) \(\Q(\sqrt{-2}) \) with generator \(-a^{3} - a\) with minimal polynomial \(x^{2} + 2\):
\(\End (J_{F})\) | \(\simeq\) | \(\Z [\sqrt{2}]\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{2}) \) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) \(\Q(\sqrt{2}) \) with generator \(a^{3} - a\) with minimal polynomial \(x^{2} - 2\):
\(\End (J_{F})\) | \(\simeq\) | \(\Z [\sqrt{2}]\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{2}) \) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) \(\Q(\sqrt{-1}) \) with generator \(-a^{2}\) with minimal polynomial \(x^{2} + 1\):
\(\End (J_{F})\) | \(\simeq\) | \(\Z [\sqrt{-1}]\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-1}) \) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\C\) |
Of \(\GL_2\)-type, simple