Minimal equation
Minimal equation
Simplified equation
$y^2 + x^2y = 4x^5 + 3x^4 - 11x^3 - 6x^2 + 6x - 1$ | (homogenize, simplify) |
$y^2 + x^2zy = 4x^5z + 3x^4z^2 - 11x^3z^3 - 6x^2z^4 + 6xz^5 - z^6$ | (dehomogenize, simplify) |
$y^2 = 16x^5 + 13x^4 - 44x^3 - 24x^2 + 24x - 4$ | (homogenize, minimize) |
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-1, 6, -6, -11, 3, 4]), R([0, 0, 1]));
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-1, 6, -6, -11, 3, 4], R![0, 0, 1]);
sage: X = HyperellipticCurve(R([-4, 24, -24, -44, 13, 16]))
magma: X,pi:= SimplifiedModel(C);
Invariants
Conductor: | \( N \) | \(=\) | \(1216\) | \(=\) | \( 2^{6} \cdot 19 \) | magma: Conductor(LSeries(C)); Factorization($1);
|
Discriminant: | \( \Delta \) | \(=\) | \(-19456\) | \(=\) | \( - 2^{10} \cdot 19 \) | magma: Discriminant(C); Factorization(Integers()!$1);
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(3996\) | \(=\) | \( 2^{2} \cdot 3^{3} \cdot 37 \) |
\( I_4 \) | \(=\) | \(347595\) | \(=\) | \( 3 \cdot 5 \cdot 23173 \) |
\( I_6 \) | \(=\) | \(394636194\) | \(=\) | \( 2 \cdot 3^{2} \cdot 19 \cdot 607 \cdot 1901 \) |
\( I_{10} \) | \(=\) | \(-2432\) | \(=\) | \( - 2^{7} \cdot 19 \) |
\( J_2 \) | \(=\) | \(3996\) | \(=\) | \( 2^{2} \cdot 3^{3} \cdot 37 \) |
\( J_4 \) | \(=\) | \(433604\) | \(=\) | \( 2^{2} \cdot 108401 \) |
\( J_6 \) | \(=\) | \(54136720\) | \(=\) | \( 2^{4} \cdot 5 \cdot 11 \cdot 61519 \) |
\( J_8 \) | \(=\) | \(7079476076\) | \(=\) | \( 2^{2} \cdot 19 \cdot 31 \cdot 1231 \cdot 2441 \) |
\( J_{10} \) | \(=\) | \(-19456\) | \(=\) | \( - 2^{10} \cdot 19 \) |
\( g_1 \) | \(=\) | \(-995009990004999/19\) | ||
\( g_2 \) | \(=\) | \(-108076122094599/76\) | ||
\( g_3 \) | \(=\) | \(-3376781293545/76\) |
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ | magma: AutomorphismGroup(C); IdentifyGroup($1);
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ | magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
Rational points
All points: \((1 : 0 : 0)\)
magma: [C![1,0,0]]; // minimal model
magma: [C![1,0,0]]; // simplified model
Number of rational Weierstrass points: \(1\)
magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
This curve is locally solvable everywhere.
magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{2}\Z\)
magma: MordellWeilGroupGenus2(Jacobian(C));
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - 2 \cdot(1 : 0 : 0)\) | \(x^2 - 2z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0\) | \(2\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - 2 \cdot(1 : 0 : 0)\) | \(x^2 - 2z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0\) | \(2\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - 2 \cdot(1 : 0 : 0)\) | \(x^2 - 2z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^2z - 2z^3\) | \(0\) | \(2\) |
BSD invariants
Hasse-Weil conjecture: | unverified |
Analytic rank: | \(0\) |
Mordell-Weil rank: | \(0\) |
2-Selmer rank: | \(1\) |
Regulator: | \( 1 \) |
Real period: | \( 1.625808 \) |
Tamagawa product: | \( 1 \) |
Torsion order: | \( 2 \) |
Leading coefficient: | \( 0.406452 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | L-factor | Cluster picture |
---|---|---|---|---|---|
\(2\) | \(6\) | \(10\) | \(1\) | \(1 + T\) | |
\(19\) | \(1\) | \(1\) | \(1\) | \(( 1 - T )( 1 - 2 T + 19 T^{2} )\) |
Galois representations
The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.60.1 | yes |
\(3\) | 3.80.2 | no |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
magma: HeuristicDecompositionFactors(C);
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | \(\Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);