The Jacobian of this curve is isogenous to that of the quotient of the modular curve $X_0(35)$ by the Atkin-Lehner involution $w_7$ , which has discriminant $5^77^3$.
Minimal equation
Minimal equation
Simplified equation
$y^2 + (x^3 + x^2)y = 2x^3 + x^2 + x + 2$ | (homogenize, simplify) |
$y^2 + (x^3 + x^2z)y = 2x^3z^3 + x^2z^4 + xz^5 + 2z^6$ | (dehomogenize, simplify) |
$y^2 = x^6 + 2x^5 + x^4 + 8x^3 + 4x^2 + 4x + 8$ | (homogenize, minimize) |
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([2, 1, 1, 2]), R([0, 0, 1, 1]));
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![2, 1, 1, 2], R![0, 0, 1, 1]);
sage: X = HyperellipticCurve(R([8, 4, 4, 8, 1, 2, 1]))
magma: X,pi:= SimplifiedModel(C);
Invariants
Conductor: | \( N \) | \(=\) | \(1225\) | \(=\) | \( 5^{2} \cdot 7^{2} \) | magma: Conductor(LSeries(C)); Factorization($1);
|
Discriminant: | \( \Delta \) | \(=\) | \(6125\) | \(=\) | \( 5^{3} \cdot 7^{2} \) | magma: Discriminant(C); Factorization(Integers()!$1);
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(320\) | \(=\) | \( 2^{6} \cdot 5 \) |
\( I_4 \) | \(=\) | \(14344\) | \(=\) | \( 2^{3} \cdot 11 \cdot 163 \) |
\( I_6 \) | \(=\) | \(962481\) | \(=\) | \( 3 \cdot 13 \cdot 23 \cdot 29 \cdot 37 \) |
\( I_{10} \) | \(=\) | \(-24500\) | \(=\) | \( - 2^{2} \cdot 5^{3} \cdot 7^{2} \) |
\( J_2 \) | \(=\) | \(160\) | \(=\) | \( 2^{5} \cdot 5 \) |
\( J_4 \) | \(=\) | \(-1324\) | \(=\) | \( - 2^{2} \cdot 331 \) |
\( J_6 \) | \(=\) | \(8791\) | \(=\) | \( 59 \cdot 149 \) |
\( J_8 \) | \(=\) | \(-86604\) | \(=\) | \( - 2^{2} \cdot 3 \cdot 7 \cdot 1031 \) |
\( J_{10} \) | \(=\) | \(-6125\) | \(=\) | \( - 5^{3} \cdot 7^{2} \) |
\( g_1 \) | \(=\) | \(-838860800/49\) | ||
\( g_2 \) | \(=\) | \(43384832/49\) | ||
\( g_3 \) | \(=\) | \(-9001984/245\) |
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ | magma: AutomorphismGroup(C); IdentifyGroup($1);
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ | magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
Rational points
All points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (-1 : 0 : 1)\)
magma: [C![-1,0,1],C![1,-1,0],C![1,0,0]]; // minimal model
magma: [C![-1,0,1],C![1,-1,0],C![1,1,0]]; // simplified model
Number of rational Weierstrass points: \(1\)
magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
This curve is locally solvable everywhere.
magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{8}\Z\)
magma: MordellWeilGroupGenus2(Jacobian(C));
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(2x^2 - xz + 2z^2\) | \(=\) | \(0,\) | \(4y\) | \(=\) | \(xz^2 + 6z^3\) | \(0\) | \(8\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(2x^2 - xz + 2z^2\) | \(=\) | \(0,\) | \(4y\) | \(=\) | \(xz^2 + 6z^3\) | \(0\) | \(8\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) | \(2x^2 - xz + 2z^2\) | \(=\) | \(0,\) | \(4y\) | \(=\) | \(x^3 + x^2z + 2xz^2 + 12z^3\) | \(0\) | \(8\) |
BSD invariants
Hasse-Weil conjecture: | verified |
Analytic rank: | \(0\) |
Mordell-Weil rank: | \(0\) |
2-Selmer rank: | \(1\) |
Regulator: | \( 1 \) |
Real period: | \( 11.92789 \) |
Tamagawa product: | \( 2 \) |
Torsion order: | \( 8 \) |
Leading coefficient: | \( 0.372746 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | L-factor | Cluster picture |
---|---|---|---|---|---|
\(5\) | \(2\) | \(3\) | \(2\) | \(( 1 - T )^{2}\) | |
\(7\) | \(2\) | \(2\) | \(1\) | \(( 1 + T )^{2}\) |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.60.1 | yes |
\(3\) | 3.72.2 | no |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\times\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
magma: HeuristicDecompositionFactors(C);
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | \(\Z [\frac{1 + \sqrt{17}}{2}]\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{17}) \) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);