Properties

Label 135424.l.270848.1
Conductor 135424135424
Discriminant 270848-270848
Mordell-Weil group Z/2Z\Z/{2}\Z
Sato-Tate group E4E_4
End(JQ)R\End(J_{\overline{\Q}}) \otimes \R M2(R)\mathrm{M}_2(\R)
End(JQ)Q\End(J_{\overline{\Q}}) \otimes \Q M2(Q)\mathrm{M}_2(\Q)
End(J)Q\End(J) \otimes \Q CM\mathsf{CM}
Q\overline{\Q}-simple no
GL2\mathrm{GL}_2-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

y2+(x3+x2+x+1)y=x62x4x32x2x1y^2 + (x^3 + x^2 + x + 1)y = -x^6 - 2x^4 - x^3 - 2x^2 - x - 1 (homogenize, simplify)
y2+(x3+x2z+xz2+z3)y=x62x4z2x3z32x2z4xz5z6y^2 + (x^3 + x^2z + xz^2 + z^3)y = -x^6 - 2x^4z^2 - x^3z^3 - 2x^2z^4 - xz^5 - z^6 (dehomogenize, simplify)
y2=3x6+2x55x45x22x3y^2 = -3x^6 + 2x^5 - 5x^4 - 5x^2 - 2x - 3 (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-1, -1, -2, -1, -2, 0, -1]), R([1, 1, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-1, -1, -2, -1, -2, 0, -1], R![1, 1, 1, 1]);
 
sage: X = HyperellipticCurve(R([-3, -2, -5, 0, -5, 2, -3]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: N N  ==  135424135424 == 28232 2^{8} \cdot 23^{2}
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: Δ \Delta  ==  270848-270848 == 29232 - 2^{9} \cdot 23^{2}
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

I2 I_2  == 170170 ==  2517 2 \cdot 5 \cdot 17
I4 I_4  == 430430 ==  2543 2 \cdot 5 \cdot 43
I6 I_6  == 2356023560 ==  2351931 2^{3} \cdot 5 \cdot 19 \cdot 31
I10 I_{10}  == 10581058 ==  2232 2 \cdot 23^{2}
J2 J_2  == 340340 ==  22517 2^{2} \cdot 5 \cdot 17
J4 J_4  == 36703670 ==  25367 2 \cdot 5 \cdot 367
J6 J_6  == 3174031740 ==  2235232 2^{2} \cdot 3 \cdot 5 \cdot 23^{2}
J8 J_8  == 669325-669325 ==  5241653 - 5^{2} \cdot 41 \cdot 653
J10 J_{10}  == 270848270848 ==  29232 2^{9} \cdot 23^{2}
g1 g_1  == 8874106250/5298874106250/529
g2 g_2  == 1126919375/21161126919375/2116
g3 g_3  == 108375/8108375/8

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

Aut(X)\mathrm{Aut}(X)\simeq C4C_4
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
Aut(XQ)\mathrm{Aut}(X_{\overline{\Q}})\simeq D4D_4
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

This curve has no rational points.
This curve has no rational points.
This curve has no rational points.

magma: []; // minimal model
 
magma: []; // simplified model
 

Number of rational Weierstrass points: 00

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable except over R\R.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: Z/2Z\Z/{2}\Z

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator D0D_0 Height Order
D0DD_0 - D_\infty x2+z2x^2 + z^2 == 0,0, yy == 00 00 22
Generator D0D_0 Height Order
D0DD_0 - D_\infty x2+z2x^2 + z^2 == 0,0, yy == 00 00 22
Generator D0D_0 Height Order
D0DD_0 - D_\infty x2+z2x^2 + z^2 == 0,0, yy == x3+x2z+xz2+z3x^3 + x^2z + xz^2 + z^3 00 22

2-torsion field: 8.0.34668544.1

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: 00
Mordell-Weil rank: 00
2-Selmer rank:22
Regulator: 1 1
Real period: 5.075262 5.075262
Tamagawa product: 2 2
Torsion order:2 2
Leading coefficient: 5.075262 5.075262
Analytic order of Ш: 2 2   (rounded)
Order of Ш:twice a square

Local invariants

Prime ord(NN) ord(Δ\Delta) Tamagawa L-factor Cluster picture
22 88 99 22 12T+2T21 - 2 T + 2 T^{2}
2323 22 22 11 1+T21 + T^{2}

Galois representations

For primes 5\ell \ge 5 the Galois representation data has not been computed for this curve since it is not generic.

For primes 3\ell \le 3, the image of the mod-\ell Galois representation is listed in the table below, whenever it is not all of GSp(4,F)\GSp(4,\F_\ell).

Prime \ell mod-\ell image Is torsion prime?
22 2.45.1 yes
33 3.540.6 no

Sato-Tate group

ST\mathrm{ST}\simeq E4E_4
ST0\mathrm{ST}^0\simeq SU(2)\mathrm{SU}(2)

Decomposition of the Jacobian

Splits over the number field Q(b)\Q (b) \simeq Q(ζ16)+\Q(\zeta_{16})^+ with defining polynomial:
  x44x2+2x^{4} - 4 x^{2} + 2

Decomposes up to isogeny as the square of the elliptic curve isogeny class:
  y2=x3g4/48xg6/864y^2 = x^3 - g_4 / 48 x - g_6 / 864 with
  g4=1600b32880b21280b+2080g_4 = 1600 b^{3} - 2880 b^{2} - 1280 b + 2080
  g6=484096b3+897536b2+274688b517632g_6 = -484096 b^{3} + 897536 b^{2} + 274688 b - 517632
   Conductor norm: 279841

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of GL2\GL_2-type over Q\Q

Endomorphism ring over Q\Q:

End(J)\End (J_{})\simeqZ[1]\Z [\sqrt{-1}]
End(J)Q\End (J_{}) \otimes \Q \simeqQ(1)\Q(\sqrt{-1})
End(J)R\End (J_{}) \otimes \R\simeq C\C

Smallest field over which all endomorphisms are defined:
Galois number field K=Q(a)K = \Q (a) \simeq Q(ζ16)+\Q(\zeta_{16})^+ with defining polynomial x44x2+2x^{4} - 4 x^{2} + 2

Not of GL2\GL_2-type over Q\overline{\Q}

Endomorphism ring over Q\overline{\Q}:

End(JQ)\End (J_{\overline{\Q}})\simeqa non-Eichler order of index 44 in a maximal order of End(JQ)Q\End (J_{\overline{\Q}}) \otimes \Q
End(JQ)Q\End (J_{\overline{\Q}}) \otimes \Q \simeqM2(\mathrm{M}_2(Q\Q))
End(JQ)R\End (J_{\overline{\Q}}) \otimes \R\simeq M2(R)\mathrm{M}_2 (\R)

Remainder of the endomorphism lattice by field

Over subfield FF \simeq Q(2)\Q(\sqrt{2}) with generator a22a^{2} - 2 with minimal polynomial x22x^{2} - 2:

End(JF)\End (J_{F})\simeqZ[1]\Z [\sqrt{-1}]
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ(1)\Q(\sqrt{-1})
End(JF)R\End (J_{F}) \otimes \R\simeq C\C
  Sato Tate group: E2E_2
  Of GL2\GL_2-type, simple

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);