y 2 + ( x 3 + x 2 + x + 1 ) y = − x 6 − 2 x 4 − x 3 − 2 x 2 − x − 1 y^2 + (x^3 + x^2 + x + 1)y = -x^6 - 2x^4 - x^3 - 2x^2 - x - 1 y 2 + ( x 3 + x 2 + x + 1 ) y = − x 6 − 2 x 4 − x 3 − 2 x 2 − x − 1
(homogenize , simplify )
y 2 + ( x 3 + x 2 z + x z 2 + z 3 ) y = − x 6 − 2 x 4 z 2 − x 3 z 3 − 2 x 2 z 4 − x z 5 − z 6 y^2 + (x^3 + x^2z + xz^2 + z^3)y = -x^6 - 2x^4z^2 - x^3z^3 - 2x^2z^4 - xz^5 - z^6 y 2 + ( x 3 + x 2 z + x z 2 + z 3 ) y = − x 6 − 2 x 4 z 2 − x 3 z 3 − 2 x 2 z 4 − x z 5 − z 6
(dehomogenize , simplify )
y 2 = − 3 x 6 + 2 x 5 − 5 x 4 − 5 x 2 − 2 x − 3 y^2 = -3x^6 + 2x^5 - 5x^4 - 5x^2 - 2x - 3 y 2 = − 3 x 6 + 2 x 5 − 5 x 4 − 5 x 2 − 2 x − 3
(homogenize , minimize )
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-1, -1, -2, -1, -2, 0, -1]), R([1, 1, 1, 1]));
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-1, -1, -2, -1, -2, 0, -1], R![1, 1, 1, 1]);
sage: X = HyperellipticCurve(R([-3, -2, -5, 0, -5, 2, -3]))
magma: X,pi:= SimplifiedModel(C);
Conductor : N N N = = = 135424 135424 1 3 5 4 2 4 = = = 2 8 ⋅ 2 3 2 2^{8} \cdot 23^{2} 2 8 ⋅ 2 3 2
magma: Conductor(LSeries(C)); Factorization($1);
Discriminant : Δ \Delta Δ = = = − 270848 -270848 − 2 7 0 8 4 8 = = = − 2 9 ⋅ 2 3 2 - 2^{9} \cdot 23^{2} − 2 9 ⋅ 2 3 2
magma: Discriminant(C); Factorization(Integers()!$1);
I 2 I_2 I 2 = = = 170 170 1 7 0 = = =
2 ⋅ 5 ⋅ 17 2 \cdot 5 \cdot 17 2 ⋅ 5 ⋅ 1 7
I 4 I_4 I 4 = = = 430 430 4 3 0 = = =
2 ⋅ 5 ⋅ 43 2 \cdot 5 \cdot 43 2 ⋅ 5 ⋅ 4 3
I 6 I_6 I 6 = = = 23560 23560 2 3 5 6 0 = = =
2 3 ⋅ 5 ⋅ 19 ⋅ 31 2^{3} \cdot 5 \cdot 19 \cdot 31 2 3 ⋅ 5 ⋅ 1 9 ⋅ 3 1
I 10 I_{10} I 1 0 = = = 1058 1058 1 0 5 8 = = =
2 ⋅ 2 3 2 2 \cdot 23^{2} 2 ⋅ 2 3 2
J 2 J_2 J 2 = = = 340 340 3 4 0 = = =
2 2 ⋅ 5 ⋅ 17 2^{2} \cdot 5 \cdot 17 2 2 ⋅ 5 ⋅ 1 7
J 4 J_4 J 4 = = = 3670 3670 3 6 7 0 = = =
2 ⋅ 5 ⋅ 367 2 \cdot 5 \cdot 367 2 ⋅ 5 ⋅ 3 6 7
J 6 J_6 J 6 = = = 31740 31740 3 1 7 4 0 = = =
2 2 ⋅ 3 ⋅ 5 ⋅ 2 3 2 2^{2} \cdot 3 \cdot 5 \cdot 23^{2} 2 2 ⋅ 3 ⋅ 5 ⋅ 2 3 2
J 8 J_8 J 8 = = = − 669325 -669325 − 6 6 9 3 2 5 = = =
− 5 2 ⋅ 41 ⋅ 653 - 5^{2} \cdot 41 \cdot 653 − 5 2 ⋅ 4 1 ⋅ 6 5 3
J 10 J_{10} J 1 0 = = = 270848 270848 2 7 0 8 4 8 = = =
2 9 ⋅ 2 3 2 2^{9} \cdot 23^{2} 2 9 ⋅ 2 3 2
g 1 g_1 g 1 = = = 8874106250 / 529 8874106250/529 8 8 7 4 1 0 6 2 5 0 / 5 2 9
g 2 g_2 g 2 = = = 1126919375 / 2116 1126919375/2116 1 1 2 6 9 1 9 3 7 5 / 2 1 1 6
g 3 g_3 g 3 = = = 108375 / 8 108375/8 1 0 8 3 7 5 / 8
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
A u t ( X ) \mathrm{Aut}(X) A u t ( X ) ≃ \simeq ≃
C 4 C_4 C 4
magma: AutomorphismGroup(C); IdentifyGroup($1);
A u t ( X Q ‾ ) \mathrm{Aut}(X_{\overline{\Q}}) A u t ( X Q ) ≃ \simeq ≃
D 4 D_4 D 4
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
magma: []; // minimal model
magma: []; // simplified model
Number of rational Weierstrass points : 0 0 0
magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
This curve is locally solvable except over R \R R .
magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
Group structure : Z / 2 Z \Z/{2}\Z Z / 2 Z
magma: MordellWeilGroupGenus2(Jacobian(C));
Generator
D 0 D_0 D 0
Height
Order
D 0 − D ∞ D_0 - D_\infty D 0 − D ∞
x 2 + z 2 x^2 + z^2 x 2 + z 2
= = =
0 , 0, 0 ,
y y y
= = =
x 3 + x 2 z + x z 2 + z 3 x^3 + x^2z + xz^2 + z^3 x 3 + x 2 z + x z 2 + z 3
0 0 0
2 2 2
2-torsion field : 8.0.34668544.1
For primes ℓ ≥ 5 \ell \ge 5 ℓ ≥ 5 the Galois representation data has not been computed for this curve since it is not generic.
For primes ℓ ≤ 3 \ell \le 3 ℓ ≤ 3 , the image of the mod-ℓ \ell ℓ Galois representation is listed in the table below, whenever it is not all of GSp ( 4 , F ℓ ) \GSp(4,\F_\ell) GSp ( 4 , F ℓ ) .
S T \mathrm{ST} S T ≃ \simeq ≃ E 4 E_4 E 4
S T 0 \mathrm{ST}^0 S T 0 ≃ \simeq ≃ S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Splits over the number field Q ( b ) ≃ \Q (b) \simeq Q ( b ) ≃ Q ( ζ 16 ) + \Q(\zeta_{16})^+ Q ( ζ 1 6 ) + with defining polynomial: x 4 − 4 x 2 + 2 x^{4} - 4 x^{2} + 2 x 4 − 4 x 2 + 2
Decomposes up to isogeny as the square of the elliptic curve isogeny class: y 2 = x 3 − g 4 / 48 x − g 6 / 864 y^2 = x^3 - g_4 / 48 x - g_6 / 864 y 2 = x 3 − g 4 / 4 8 x − g 6 / 8 6 4 with g 4 = 1600 b 3 − 2880 b 2 − 1280 b + 2080 g_4 = 1600 b^{3} - 2880 b^{2} - 1280 b + 2080 g 4 = 1 6 0 0 b 3 − 2 8 8 0 b 2 − 1 2 8 0 b + 2 0 8 0 g 6 = − 484096 b 3 + 897536 b 2 + 274688 b − 517632 g_6 = -484096 b^{3} + 897536 b^{2} + 274688 b - 517632 g 6 = − 4 8 4 0 9 6 b 3 + 8 9 7 5 3 6 b 2 + 2 7 4 6 8 8 b − 5 1 7 6 3 2 Conductor norm: 279841
magma: HeuristicDecompositionFactors(C);
Of GL 2 \GL_2 GL 2 -type over Q \Q Q
Endomorphism ring over Q \Q Q :
End ( J ) \End (J_{}) E n d ( J ) ≃ \simeq ≃ Z [ − 1 ] \Z [\sqrt{-1}] Z [ − 1 ] End ( J ) ⊗ Q \End (J_{}) \otimes \Q E n d ( J ) ⊗ Q ≃ \simeq ≃ Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 ) End ( J ) ⊗ R \End (J_{}) \otimes \R E n d ( J ) ⊗ R ≃ \simeq ≃ C \C C
Smallest field over which all endomorphisms are defined:
Galois number field K = Q ( a ) ≃ K = \Q (a) \simeq K = Q ( a ) ≃ Q ( ζ 16 ) + \Q(\zeta_{16})^+ Q ( ζ 1 6 ) + with defining polynomial x 4 − 4 x 2 + 2 x^{4} - 4 x^{2} + 2 x 4 − 4 x 2 + 2
Not of GL 2 \GL_2 GL 2 -type over Q ‾ \overline{\Q} Q
Endomorphism ring over Q ‾ \overline{\Q} Q :
End ( J Q ‾ ) \End (J_{\overline{\Q}}) E n d ( J Q ) ≃ \simeq ≃ a non-Eichler order of index 4 4 4 in a maximal order of End ( J Q ‾ ) ⊗ Q \End (J_{\overline{\Q}}) \otimes \Q E n d ( J Q ) ⊗ Q End ( J Q ‾ ) ⊗ Q \End (J_{\overline{\Q}}) \otimes \Q E n d ( J Q ) ⊗ Q ≃ \simeq ≃ M 2 ( \mathrm{M}_2( M 2 ( Q \Q Q ) ) ) End ( J Q ‾ ) ⊗ R \End (J_{\overline{\Q}}) \otimes \R E n d ( J Q ) ⊗ R ≃ \simeq ≃ M 2 ( R ) \mathrm{M}_2 (\R) M 2 ( R )
Over subfield F ≃ F \simeq F ≃ Q ( 2 ) \Q(\sqrt{2}) Q ( 2 ) with generator a 2 − 2 a^{2} - 2 a 2 − 2 with minimal polynomial x 2 − 2 x^{2} - 2 x 2 − 2 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ Z [ − 1 ] \Z [\sqrt{-1}] Z [ − 1 ] End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 ) End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ C \C C
Sato Tate group:
E 2 E_2 E 2 Of
GL 2 \GL_2 GL 2 -type, simple
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);