This is a model for the modular curve X0(37).
y2+x3y=2x5−5x4+7x3−6x2+3x−1 |
(homogenize, simplify) |
y2+x3y=2x5z−5x4z2+7x3z3−6x2z4+3xz5−z6 |
(dehomogenize, simplify) |
y2=x6+8x5−20x4+28x3−24x2+12x−4 |
(homogenize, minimize) |
sage:R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-1, 3, -6, 7, -5, 2]), R([0, 0, 0, 1]));
magma:R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-1, 3, -6, 7, -5, 2], R![0, 0, 0, 1]);
sage:X = HyperellipticCurve(R([-4, 12, -24, 28, -20, 8, 1]))
magma:X,pi:= SimplifiedModel(C);
Conductor: | N | = | 1369 | = | 372 |
magma:Conductor(LSeries(C)); Factorization($1);
|
Discriminant: | Δ | = | 50653 | = | 373 |
magma:Discriminant(C); Factorization(Integers()!$1);
|
I2 | = | 456 | = |
23⋅3⋅19 |
I4 | = | 11220 | = |
22⋅3⋅5⋅11⋅17 |
I6 | = | 2199936 | = |
27⋅3⋅17⋅337 |
I10 | = | 202612 | = |
22⋅373 |
J2 | = | 228 | = |
22⋅3⋅19 |
J4 | = | 296 | = |
23⋅37 |
J6 | = | −98568 | = |
−23⋅32⋅372 |
J8 | = | −5640280 | = |
−23⋅5⋅372⋅103 |
J10 | = | 50653 | = |
373 |
g1 | = | 616132666368/50653 |
g2 | = | 94818816/1369 |
g3 | = | −3742848/37 |
sage:C.igusa_clebsch_invariants(); [factor(a) for a in _]
magma:IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
Aut(X) | ≃ |
C22 |
magma:AutomorphismGroup(C); IdentifyGroup($1);
|
Aut(XQ) | ≃ |
C22 |
magma:AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
All points:
(1:0:0),(1:−1:0),(1:0:1),(1:−1:1)
All points:
(1:0:0),(1:−1:0),(1:0:1),(1:−1:1)
All points:
(1:−1:0),(1:1:0),(1:−1:1),(1:1:1)
magma:[C![1,-1,0],C![1,-1,1],C![1,0,0],C![1,0,1]]; // minimal model
magma:[C![1,-1,0],C![1,-1,1],C![1,1,0],C![1,1,1]]; // simplified model
Number of rational Weierstrass points: 0
magma:#Roots(HyperellipticPolynomials(SimplifiedModel(C)));
This curve is locally solvable everywhere.
magma:f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
Group structure: Z⊕Z/3Z
magma:MordellWeilGroupGenus2(Jacobian(C));
Generator |
D0 |
|
|
|
|
|
Height |
Order |
D0−(1:−1:0)−(1:0:0) |
x2−xz+z2 |
= |
0, |
y |
= |
z3 |
0.102222 |
∞ |
(1:−1:1)−(1:−1:0) |
z(x−z) |
= |
0, |
y |
= |
−z3 |
0 |
3 |
Generator |
D0 |
|
|
|
|
|
Height |
Order |
D0−(1:−1:0)−(1:0:0) |
x2−xz+z2 |
= |
0, |
y |
= |
z3 |
0.102222 |
∞ |
(1:−1:1)−(1:−1:0) |
z(x−z) |
= |
0, |
y |
= |
−z3 |
0 |
3 |
Generator |
D0 |
|
|
|
|
|
Height |
Order |
D0−(1:−1:0)−(1:1:0) |
x2−xz+z2 |
= |
0, |
y |
= |
x3+2z3 |
0.102222 |
∞ |
(1:−1:1)−(1:−1:0) |
z(x−z) |
= |
0, |
y |
= |
x3−2z3 |
0 |
3 |
2-torsion field: 4.0.592.1
For primes ℓ≥5 the Galois representation data has not been computed for this curve since it is not generic.
For primes ℓ≤3, the image of the mod-ℓ Galois representation is listed in the table below, whenever it is not all of GSp(4,Fℓ).
Splits over Q
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
Elliptic curve isogeny class 37.b
Elliptic curve isogeny class 37.a
magma:HeuristicDecompositionFactors(C);
Of GL2-type over Q
Endomorphism ring over Q:
End(J) | ≃ | an order of index 2 in Z×Z |
End(J)⊗Q | ≃ | Q × Q |
End(J)⊗R | ≃ | R×R |
All Q-endomorphisms of the Jacobian are defined over Q.
magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
magma:HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
magma:HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);