This is a model for the modular curve $X_0(37)$.
Minimal equation
Minimal equation
Simplified equation
$y^2 + x^3y = 2x^5 - 5x^4 + 7x^3 - 6x^2 + 3x - 1$ | (homogenize, simplify) |
$y^2 + x^3y = 2x^5z - 5x^4z^2 + 7x^3z^3 - 6x^2z^4 + 3xz^5 - z^6$ | (dehomogenize, simplify) |
$y^2 = x^6 + 8x^5 - 20x^4 + 28x^3 - 24x^2 + 12x - 4$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(1369\) | \(=\) | \( 37^{2} \) | magma: Conductor(LSeries(C)); Factorization($1);
|
Discriminant: | \( \Delta \) | \(=\) | \(50653\) | \(=\) | \( 37^{3} \) | magma: Discriminant(C); Factorization(Integers()!$1);
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(456\) | \(=\) | \( 2^{3} \cdot 3 \cdot 19 \) |
\( I_4 \) | \(=\) | \(11220\) | \(=\) | \( 2^{2} \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) |
\( I_6 \) | \(=\) | \(2199936\) | \(=\) | \( 2^{7} \cdot 3 \cdot 17 \cdot 337 \) |
\( I_{10} \) | \(=\) | \(202612\) | \(=\) | \( 2^{2} \cdot 37^{3} \) |
\( J_2 \) | \(=\) | \(228\) | \(=\) | \( 2^{2} \cdot 3 \cdot 19 \) |
\( J_4 \) | \(=\) | \(296\) | \(=\) | \( 2^{3} \cdot 37 \) |
\( J_6 \) | \(=\) | \(-98568\) | \(=\) | \( - 2^{3} \cdot 3^{2} \cdot 37^{2} \) |
\( J_8 \) | \(=\) | \(-5640280\) | \(=\) | \( - 2^{3} \cdot 5 \cdot 37^{2} \cdot 103 \) |
\( J_{10} \) | \(=\) | \(50653\) | \(=\) | \( 37^{3} \) |
\( g_1 \) | \(=\) | \(616132666368/50653\) | ||
\( g_2 \) | \(=\) | \(94818816/1369\) | ||
\( g_3 \) | \(=\) | \(-3742848/37\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2^2$ | magma: AutomorphismGroup(C); IdentifyGroup($1);
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2^2$ | magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
Rational points
Number of rational Weierstrass points: \(0\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z \oplus \Z/{3}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(x^2 - xz + z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(z^3\) | \(0.102222\) | \(\infty\) |
\((1 : -1 : 1) - (1 : -1 : 0)\) | \(z (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0\) | \(3\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(x^2 - xz + z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(z^3\) | \(0.102222\) | \(\infty\) |
\((1 : -1 : 1) - (1 : -1 : 0)\) | \(z (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0\) | \(3\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) | \(x^2 - xz + z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 + 2z^3\) | \(0.102222\) | \(\infty\) |
\((1 : -1 : 1) - (1 : -1 : 0)\) | \(z (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 - 2z^3\) | \(0\) | \(3\) |
BSD invariants
Hasse-Weil conjecture: | verified |
Analytic rank: | \(1\) |
Mordell-Weil rank: | \(1\) |
2-Selmer rank: | \(1\) |
Regulator: | \( 0.102222 \) |
Real period: | \( 6.516888 \) |
Tamagawa product: | \( 3 \) |
Torsion order: | \( 3 \) |
Leading coefficient: | \( 0.222058 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | L-factor | Cluster picture |
---|---|---|---|---|---|
\(37\) | \(2\) | \(3\) | \(3\) | \(( 1 - T )( 1 + T )\) |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.30.4 | no |
\(3\) | 3.2160.20 | yes |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\times\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Splits over \(\Q\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
Elliptic curve isogeny class 37.b
Elliptic curve isogeny class 37.a
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).