Properties

Label 1369.a.50653.1
Conductor 13691369
Discriminant 5065350653
Mordell-Weil group ZZ/3Z\Z \oplus \Z/{3}\Z
Sato-Tate group SU(2)×SU(2)\mathrm{SU}(2)\times\mathrm{SU}(2)
End(JQ)R\End(J_{\overline{\Q}}) \otimes \R R×R\R \times \R
End(JQ)Q\End(J_{\overline{\Q}}) \otimes \Q Q×Q\Q \times \Q
End(J)Q\End(J) \otimes \Q Q×Q\Q \times \Q
Q\overline{\Q}-simple no
GL2\mathrm{GL}_2-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

This is a model for the modular curve X0(37)X_0(37).

Minimal equation

Minimal equation

Simplified equation

y2+x3y=2x55x4+7x36x2+3x1y^2 + x^3y = 2x^5 - 5x^4 + 7x^3 - 6x^2 + 3x - 1 (homogenize, simplify)
y2+x3y=2x5z5x4z2+7x3z36x2z4+3xz5z6y^2 + x^3y = 2x^5z - 5x^4z^2 + 7x^3z^3 - 6x^2z^4 + 3xz^5 - z^6 (dehomogenize, simplify)
y2=x6+8x520x4+28x324x2+12x4y^2 = x^6 + 8x^5 - 20x^4 + 28x^3 - 24x^2 + 12x - 4 (homogenize, minimize)

Copy content sage:R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-1, 3, -6, 7, -5, 2]), R([0, 0, 0, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-1, 3, -6, 7, -5, 2], R![0, 0, 0, 1]);
 
Copy content sage:X = HyperellipticCurve(R([-4, 12, -24, 28, -20, 8, 1]))
 
Copy content magma:X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: N N  ==  13691369 == 372 37^{2}
Copy content magma:Conductor(LSeries(C)); Factorization($1);
 
Discriminant: Δ \Delta  ==  5065350653 == 373 37^{3}
Copy content magma:Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

I2 I_2  == 456456 ==  23319 2^{3} \cdot 3 \cdot 19
I4 I_4  == 1122011220 ==  22351117 2^{2} \cdot 3 \cdot 5 \cdot 11 \cdot 17
I6 I_6  == 21999362199936 ==  27317337 2^{7} \cdot 3 \cdot 17 \cdot 337
I10 I_{10}  == 202612202612 ==  22373 2^{2} \cdot 37^{3}
J2 J_2  == 228228 ==  22319 2^{2} \cdot 3 \cdot 19
J4 J_4  == 296296 ==  2337 2^{3} \cdot 37
J6 J_6  == 98568-98568 ==  2332372 - 2^{3} \cdot 3^{2} \cdot 37^{2}
J8 J_8  == 5640280-5640280 ==  235372103 - 2^{3} \cdot 5 \cdot 37^{2} \cdot 103
J10 J_{10}  == 5065350653 ==  373 37^{3}
g1 g_1  == 616132666368/50653616132666368/50653
g2 g_2  == 94818816/136994818816/1369
g3 g_3  == 3742848/37-3742848/37

Copy content sage:C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
Copy content magma:IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

Aut(X)\mathrm{Aut}(X)\simeq C22C_2^2
Copy content magma:AutomorphismGroup(C); IdentifyGroup($1);
 
Aut(XQ)\mathrm{Aut}(X_{\overline{\Q}})\simeq C22C_2^2
Copy content magma:AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: (1:0:0),(1:1:0),(1:0:1),(1:1:1)(1 : 0 : 0),\, (1 : -1 : 0),\, (1 : 0 : 1),\, (1 : -1 : 1)
All points: (1:0:0),(1:1:0),(1:0:1),(1:1:1)(1 : 0 : 0),\, (1 : -1 : 0),\, (1 : 0 : 1),\, (1 : -1 : 1)
All points: (1:1:0),(1:1:0),(1:1:1),(1:1:1)(1 : -1 : 0),\, (1 : 1 : 0),\, (1 : -1 : 1),\, (1 : 1 : 1)

Copy content magma:[C![1,-1,0],C![1,-1,1],C![1,0,0],C![1,0,1]]; // minimal model
 
Copy content magma:[C![1,-1,0],C![1,-1,1],C![1,1,0],C![1,1,1]]; // simplified model
 

Number of rational Weierstrass points: 00

Copy content magma:#Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

Copy content magma:f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: ZZ/3Z\Z \oplus \Z/{3}\Z

Copy content magma:MordellWeilGroupGenus2(Jacobian(C));
 

Generator D0D_0 Height Order
D0(1:1:0)(1:0:0)D_0 - (1 : -1 : 0) - (1 : 0 : 0) x2xz+z2x^2 - xz + z^2 == 0,0, yy == z3z^3 0.1022220.102222 \infty
(1:1:1)(1:1:0)(1 : -1 : 1) - (1 : -1 : 0) z(xz)z (x - z) == 0,0, yy == z3-z^3 00 33
Generator D0D_0 Height Order
D0(1:1:0)(1:0:0)D_0 - (1 : -1 : 0) - (1 : 0 : 0) x2xz+z2x^2 - xz + z^2 == 0,0, yy == z3z^3 0.1022220.102222 \infty
(1:1:1)(1:1:0)(1 : -1 : 1) - (1 : -1 : 0) z(xz)z (x - z) == 0,0, yy == z3-z^3 00 33
Generator D0D_0 Height Order
D0(1:1:0)(1:1:0)D_0 - (1 : -1 : 0) - (1 : 1 : 0) x2xz+z2x^2 - xz + z^2 == 0,0, yy == x3+2z3x^3 + 2z^3 0.1022220.102222 \infty
(1:1:1)(1:1:0)(1 : -1 : 1) - (1 : -1 : 0) z(xz)z (x - z) == 0,0, yy == x32z3x^3 - 2z^3 00 33

2-torsion field: 4.0.592.1

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: 11
Mordell-Weil rank: 11
2-Selmer rank:11
Regulator: 0.102222 0.102222
Real period: 6.516888 6.516888
Tamagawa product: 3 3
Torsion order:3 3
Leading coefficient: 0.222058 0.222058
Analytic order of Ш: 1 1   (rounded)
Order of Ш:square

Local invariants

Prime ord(NN) ord(Δ\Delta) Tamagawa Root number L-factor Cluster picture Tame reduction?
3737 22 33 33 1-1 (1T)(1+T)( 1 - T )( 1 + T ) yes

Galois representations

For primes 5\ell \ge 5 the Galois representation data has not been computed for this curve since it is not generic.

For primes 3\ell \le 3, the image of the mod-\ell Galois representation is listed in the table below, whenever it is not all of GSp(4,F)\GSp(4,\F_\ell).

Prime \ell mod-\ell image Is torsion prime?
22 2.30.4 no
33 3.2160.20 yes

Sato-Tate group

ST\mathrm{ST}\simeq SU(2)×SU(2)\mathrm{SU}(2)\times\mathrm{SU}(2)
ST0\mathrm{ST}^0\simeq SU(2)×SU(2)\mathrm{SU}(2)\times\mathrm{SU}(2)

Decomposition of the Jacobian

Splits over Q\Q

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 37.b
  Elliptic curve isogeny class 37.a

Copy content magma:HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of GL2\GL_2-type over Q\Q

Endomorphism ring over Q\Q:

End(J)\End (J_{})\simeqan order of index 22 in Z×Z\Z \times \Z
End(J)Q\End (J_{}) \otimes \Q \simeqQ\Q ×\times Q\Q
End(J)R\End (J_{}) \otimes \R\simeq R×R\R \times \R

All Q\overline{\Q}-endomorphisms of the Jacobian are defined over Q\Q.

Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

Copy content magma:HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

Copy content magma:HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);