sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 2, 0, 3, 0, 1]), R([]));
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 2, 0, 3, 0, 1], R![]);
sage: X = HyperellipticCurve(R([0, 2, 0, 3, 0, 1]))
magma: X,pi:= SimplifiedModel(C);
Conductor : N N N = = = 16384 16384 1 6 3 8 4 = = = 2 14 2^{14} 2 1 4
magma: Conductor(LSeries(C: ExcFactors:=[*<2,Valuation(16384,2),R![1]>*])); Factorization($1);
Discriminant : Δ \Delta Δ = = = 32768 32768 3 2 7 6 8 = = = 2 15 2^{15} 2 1 5
magma: Discriminant(C); Factorization(Integers()!$1);
I 2 I_2 I 2 = = = 67 67 6 7 = = =
67 67 6 7
I 4 I_4 I 4 = = = 82 82 8 2 = = =
2 ⋅ 41 2 \cdot 41 2 ⋅ 4 1
I 6 I_6 I 6 = = = 1930 1930 1 9 3 0 = = =
2 ⋅ 5 ⋅ 193 2 \cdot 5 \cdot 193 2 ⋅ 5 ⋅ 1 9 3
I 10 I_{10} I 1 0 = = = 4 4 4 = = =
2 2 2^{2} 2 2
J 2 J_2 J 2 = = = 268 268 2 6 8 = = =
2 2 ⋅ 67 2^{2} \cdot 67 2 2 ⋅ 6 7
J 4 J_4 J 4 = = = 2118 2118 2 1 1 8 = = =
2 ⋅ 3 ⋅ 353 2 \cdot 3 \cdot 353 2 ⋅ 3 ⋅ 3 5 3
J 6 J_6 J 6 = = = − 124 -124 − 1 2 4 = = =
− 2 2 ⋅ 31 - 2^{2} \cdot 31 − 2 2 ⋅ 3 1
J 8 J_8 J 8 = = = − 1129789 -1129789 − 1 1 2 9 7 8 9 = = =
− 1129789 -1129789 − 1 1 2 9 7 8 9
J 10 J_{10} J 1 0 = = = 32768 32768 3 2 7 6 8 = = =
2 15 2^{15} 2 1 5
g 1 g_1 g 1 = = = 1350125107 / 32 1350125107/32 1 3 5 0 1 2 5 1 0 7 / 3 2
g 2 g_2 g 2 = = = 318508017 / 256 318508017/256 3 1 8 5 0 8 0 1 7 / 2 5 6
g 3 g_3 g 3 = = = − 139159 / 512 -139159/512 − 1 3 9 1 5 9 / 5 1 2
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
A u t ( X ) \mathrm{Aut}(X) A u t ( X ) ≃ \simeq ≃
C 2 C_2 C 2
magma: AutomorphismGroup(C); IdentifyGroup($1);
A u t ( X Q ‾ ) \mathrm{Aut}(X_{\overline{\Q}}) A u t ( X Q ) ≃ \simeq ≃
D 4 D_4 D 4
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
All points :
( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) (1 : 0 : 0),\, (0 : 0 : 1) ( 1 : 0 : 0 ) , ( 0 : 0 : 1 )
All points :
( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) (1 : 0 : 0),\, (0 : 0 : 1) ( 1 : 0 : 0 ) , ( 0 : 0 : 1 )
All points :
( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) (1 : 0 : 0),\, (0 : 0 : 1) ( 1 : 0 : 0 ) , ( 0 : 0 : 1 )
magma: [C![0,0,1],C![1,0,0]]; // minimal model
magma: [C![0,0,1],C![1,0,0]]; // simplified model
Number of rational Weierstrass points : 2 2 2
magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
This curve is locally solvable everywhere.
magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
Group structure : Z / 2 Z ⊕ Z / 2 Z \Z/{2}\Z \oplus \Z/{2}\Z Z / 2 Z ⊕ Z / 2 Z
magma: MordellWeilGroupGenus2(Jacobian(C));
Generator
D 0 D_0 D 0
Height
Order
( 0 : 0 : 1 ) − ( 1 : 0 : 0 ) (0 : 0 : 1) - (1 : 0 : 0) ( 0 : 0 : 1 ) − ( 1 : 0 : 0 )
x x x
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
D 0 − 2 ⋅ ( 1 : 0 : 0 ) D_0 - 2 \cdot(1 : 0 : 0) D 0 − 2 ⋅ ( 1 : 0 : 0 )
x 2 + 2 z 2 x^2 + 2z^2 x 2 + 2 z 2
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
Generator
D 0 D_0 D 0
Height
Order
( 0 : 0 : 1 ) − ( 1 : 0 : 0 ) (0 : 0 : 1) - (1 : 0 : 0) ( 0 : 0 : 1 ) − ( 1 : 0 : 0 )
x x x
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
D 0 − 2 ⋅ ( 1 : 0 : 0 ) D_0 - 2 \cdot(1 : 0 : 0) D 0 − 2 ⋅ ( 1 : 0 : 0 )
x 2 + 2 z 2 x^2 + 2z^2 x 2 + 2 z 2
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
Generator
D 0 D_0 D 0
Height
Order
( 0 : 0 : 1 ) − ( 1 : 0 : 0 ) (0 : 0 : 1) - (1 : 0 : 0) ( 0 : 0 : 1 ) − ( 1 : 0 : 0 )
x x x
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
D 0 − 2 ⋅ ( 1 : 0 : 0 ) D_0 - 2 \cdot(1 : 0 : 0) D 0 − 2 ⋅ ( 1 : 0 : 0 )
x 2 + 2 z 2 x^2 + 2z^2 x 2 + 2 z 2
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
2-torsion field : Q ( ζ 8 ) \Q(\zeta_{8}) Q ( ζ 8 )
For primes ℓ ≥ 5 \ell \ge 5 ℓ ≥ 5 the Galois representation data has not been computed for this curve since it is not generic.
For primes ℓ ≤ 3 \ell \le 3 ℓ ≤ 3 , the image of the mod-ℓ \ell ℓ Galois representation is listed in the table below, whenever it is not all of GSp ( 4 , F ℓ ) \GSp(4,\F_\ell) GSp ( 4 , F ℓ ) .
S T \mathrm{ST} S T ≃ \simeq ≃ J ( E 4 ) J(E_4) J ( E 4 )
S T 0 \mathrm{ST}^0 S T 0 ≃ \simeq ≃ S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Splits over the number field Q ( b ) ≃ \Q (b) \simeq Q ( b ) ≃ 4.2.2048.1 with defining polynomial: x 4 − 2 x^{4} - 2 x 4 − 2
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes: y 2 = x 3 − g 4 / 48 x − g 6 / 864 y^2 = x^3 - g_4 / 48 x - g_6 / 864 y 2 = x 3 − g 4 / 4 8 x − g 6 / 8 6 4 with g 4 = 160 b 2 − 144 g_4 = 160 b^{2} - 144 g 4 = 1 6 0 b 2 − 1 4 4 g 6 = − 1792 b 3 + 3456 b g_6 = -1792 b^{3} + 3456 b g 6 = − 1 7 9 2 b 3 + 3 4 5 6 b Conductor norm: 32 y 2 = x 3 − g 4 / 48 x − g 6 / 864 y^2 = x^3 - g_4 / 48 x - g_6 / 864 y 2 = x 3 − g 4 / 4 8 x − g 6 / 8 6 4 with g 4 = 160 b 2 − 144 g_4 = 160 b^{2} - 144 g 4 = 1 6 0 b 2 − 1 4 4 g 6 = 1792 b 3 − 3456 b g_6 = 1792 b^{3} - 3456 b g 6 = 1 7 9 2 b 3 − 3 4 5 6 b Conductor norm: 32
magma: HeuristicDecompositionFactors(C);
Not of GL 2 \GL_2 GL 2 -type over Q \Q Q
Endomorphism ring over Q \Q Q :
End ( J ) \End (J_{}) E n d ( J ) ≃ \simeq ≃ Z \Z Z End ( J ) ⊗ Q \End (J_{}) \otimes \Q E n d ( J ) ⊗ Q ≃ \simeq ≃ Q \Q Q End ( J ) ⊗ R \End (J_{}) \otimes \R E n d ( J ) ⊗ R ≃ \simeq ≃ R \R R
Smallest field over which all endomorphisms are defined:
Galois number field K = Q ( a ) ≃ K = \Q (a) \simeq K = Q ( a ) ≃ 8.0.16777216.2 with defining polynomial x 8 − 4 x 6 + 8 x 4 − 4 x 2 + 1 x^{8} - 4 x^{6} + 8 x^{4} - 4 x^{2} + 1 x 8 − 4 x 6 + 8 x 4 − 4 x 2 + 1
Not of GL 2 \GL_2 GL 2 -type over Q ‾ \overline{\Q} Q
Endomorphism ring over Q ‾ \overline{\Q} Q :
End ( J Q ‾ ) \End (J_{\overline{\Q}}) E n d ( J Q ) ≃ \simeq ≃ a non-Eichler order of index 4 4 4 in a maximal order of End ( J Q ‾ ) ⊗ Q \End (J_{\overline{\Q}}) \otimes \Q E n d ( J Q ) ⊗ Q End ( J Q ‾ ) ⊗ Q \End (J_{\overline{\Q}}) \otimes \Q E n d ( J Q ) ⊗ Q ≃ \simeq ≃ M 2 ( \mathrm{M}_2( M 2 ( Q \Q Q ) ) ) End ( J Q ‾ ) ⊗ R \End (J_{\overline{\Q}}) \otimes \R E n d ( J Q ) ⊗ R ≃ \simeq ≃ M 2 ( R ) \mathrm{M}_2 (\R) M 2 ( R )
Over subfield F ≃ F \simeq F ≃ Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 ) with generator 2 3 a 6 − 7 3 a 4 + 14 3 a 2 − 4 3 \frac{2}{3} a^{6} - \frac{7}{3} a^{4} + \frac{14}{3} a^{2} - \frac{4}{3} 3 2 a 6 − 3 7 a 4 + 3 1 4 a 2 − 3 4 with minimal polynomial x 2 + 1 x^{2} + 1 x 2 + 1 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ Z [ − 1 ] \Z [\sqrt{-1}] Z [ − 1 ] End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 ) End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ C \C C
Sato Tate group:
E 4 E_4 E 4 Of
GL 2 \GL_2 GL 2 -type, simple
Over subfield F ≃ F \simeq F ≃ Q ( 2 ) \Q(\sqrt{2}) Q ( 2 ) with generator − 1 3 a 6 + 2 3 a 4 − 1 3 a 2 − 4 3 -\frac{1}{3} a^{6} + \frac{2}{3} a^{4} - \frac{1}{3} a^{2} - \frac{4}{3} − 3 1 a 6 + 3 2 a 4 − 3 1 a 2 − 3 4 with minimal polynomial x 2 − 2 x^{2} - 2 x 2 − 2 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ Z \Z Z End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q \Q Q End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ R \R R
Sato Tate group:
J ( E 2 ) J(E_2) J ( E 2 ) Not of
GL 2 \GL_2 GL 2 -type, simple
Over subfield F ≃ F \simeq F ≃ Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 ) with generator a 6 − 4 a 4 + 7 a 2 − 2 a^{6} - 4 a^{4} + 7 a^{2} - 2 a 6 − 4 a 4 + 7 a 2 − 2 with minimal polynomial x 2 + 2 x^{2} + 2 x 2 + 2 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ Z \Z Z End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q \Q Q End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ R \R R
Sato Tate group:
J ( E 2 ) J(E_2) J ( E 2 ) Not of
GL 2 \GL_2 GL 2 -type, simple
Over subfield F ≃ F \simeq F ≃ 4.2.2048.1 with generator 4 3 a 7 − 14 3 a 5 + 25 3 a 3 − 5 3 a \frac{4}{3} a^{7} - \frac{14}{3} a^{5} + \frac{25}{3} a^{3} - \frac{5}{3} a 3 4 a 7 − 3 1 4 a 5 + 3 2 5 a 3 − 3 5 a with minimal polynomial x 4 − 2 x^{4} - 2 x 4 − 2 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ an order of index 2 2 2 in Z × Z \Z \times \Z Z × Z End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q \Q Q × \times × Q \Q Q End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ R × R \R \times \R R × R
Sato Tate group:
J ( E 1 ) J(E_1) J ( E 1 ) Of
GL 2 \GL_2 GL 2 -type, not simple
Over subfield F ≃ F \simeq F ≃ 4.0.2048.1 with generator − a 7 + 4 a 5 − 8 a 3 + 3 a -a^{7} + 4 a^{5} - 8 a^{3} + 3 a − a 7 + 4 a 5 − 8 a 3 + 3 a with minimal polynomial x 4 + 2 x^{4} + 2 x 4 + 2 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ Z [ 2 ] \Z [\sqrt{2}] Z [ 2 ] End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q ( 2 ) \Q(\sqrt{2}) Q ( 2 ) End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ R × R \R \times \R R × R
Sato Tate group:
J ( E 1 ) J(E_1) J ( E 1 ) Of
GL 2 \GL_2 GL 2 -type, simple
Over subfield F ≃ F \simeq F ≃ 4.0.2048.1 with generator 2 3 a 7 − 7 3 a 5 + 11 3 a 3 + 2 3 a \frac{2}{3} a^{7} - \frac{7}{3} a^{5} + \frac{11}{3} a^{3} + \frac{2}{3} a 3 2 a 7 − 3 7 a 5 + 3 1 1 a 3 + 3 2 a with minimal polynomial x 4 + 2 x^{4} + 2 x 4 + 2 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ Z [ 2 ] \Z [\sqrt{2}] Z [ 2 ] End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q ( 2 ) \Q(\sqrt{2}) Q ( 2 ) End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ R × R \R \times \R R × R
Sato Tate group:
J ( E 1 ) J(E_1) J ( E 1 ) Of
GL 2 \GL_2 GL 2 -type, simple
Over subfield F ≃ F \simeq F ≃ 4.2.2048.1 with generator 1 3 a 7 − 5 3 a 5 + 10 3 a 3 − 8 3 a \frac{1}{3} a^{7} - \frac{5}{3} a^{5} + \frac{10}{3} a^{3} - \frac{8}{3} a 3 1 a 7 − 3 5 a 5 + 3 1 0 a 3 − 3 8 a with minimal polynomial x 4 − 2 x^{4} - 2 x 4 − 2 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ an order of index 2 2 2 in Z × Z \Z \times \Z Z × Z End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q \Q Q × \times × Q \Q Q End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ R × R \R \times \R R × R
Sato Tate group:
J ( E 1 ) J(E_1) J ( E 1 ) Of
GL 2 \GL_2 GL 2 -type, not simple
Over subfield F ≃ F \simeq F ≃ Q ( ζ 8 ) \Q(\zeta_{8}) Q ( ζ 8 ) with generator 1 3 a 6 − 5 3 a 4 + 10 3 a 2 − 5 3 \frac{1}{3} a^{6} - \frac{5}{3} a^{4} + \frac{10}{3} a^{2} - \frac{5}{3} 3 1 a 6 − 3 5 a 4 + 3 1 0 a 2 − 3 5 with minimal polynomial x 4 + 1 x^{4} + 1 x 4 + 1 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ Z [ − 1 ] \Z [\sqrt{-1}] Z [ − 1 ] End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 ) End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ C \C C
Sato Tate group:
E 2 E_2 E 2 Of
GL 2 \GL_2 GL 2 -type, simple
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);