Properties

Label 16384.a.32768.1
Conductor 1638416384
Discriminant 3276832768
Mordell-Weil group Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z
Sato-Tate group J(E4)J(E_4)
End(JQ)R\End(J_{\overline{\Q}}) \otimes \R M2(R)\mathrm{M}_2(\R)
End(JQ)Q\End(J_{\overline{\Q}}) \otimes \Q M2(Q)\mathrm{M}_2(\Q)
End(J)Q\End(J) \otimes \Q Q\Q
Q\overline{\Q}-simple no
GL2\mathrm{GL}_2-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

y2=x5+3x3+2xy^2 = x^5 + 3x^3 + 2x (homogenize, simplify)
y2=x5z+3x3z3+2xz5y^2 = x^5z + 3x^3z^3 + 2xz^5 (dehomogenize, simplify)
y2=x5+3x3+2xy^2 = x^5 + 3x^3 + 2x (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 2, 0, 3, 0, 1]), R([]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 2, 0, 3, 0, 1], R![]);
 
sage: X = HyperellipticCurve(R([0, 2, 0, 3, 0, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: N N  ==  1638416384 == 214 2^{14}
magma: Conductor(LSeries(C: ExcFactors:=[*<2,Valuation(16384,2),R![1]>*])); Factorization($1);
 
Discriminant: Δ \Delta  ==  3276832768 == 215 2^{15}
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

I2 I_2  == 6767 ==  67 67
I4 I_4  == 8282 ==  241 2 \cdot 41
I6 I_6  == 19301930 ==  25193 2 \cdot 5 \cdot 193
I10 I_{10}  == 44 ==  22 2^{2}
J2 J_2  == 268268 ==  2267 2^{2} \cdot 67
J4 J_4  == 21182118 ==  23353 2 \cdot 3 \cdot 353
J6 J_6  == 124-124 ==  2231 - 2^{2} \cdot 31
J8 J_8  == 1129789-1129789 ==  1129789 -1129789
J10 J_{10}  == 3276832768 ==  215 2^{15}
g1 g_1  == 1350125107/321350125107/32
g2 g_2  == 318508017/256318508017/256
g3 g_3  == 139159/512-139159/512

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

Aut(X)\mathrm{Aut}(X)\simeq C2C_2
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
Aut(XQ)\mathrm{Aut}(X_{\overline{\Q}})\simeq D4D_4
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: (1:0:0),(0:0:1)(1 : 0 : 0),\, (0 : 0 : 1)
All points: (1:0:0),(0:0:1)(1 : 0 : 0),\, (0 : 0 : 1)
All points: (1:0:0),(0:0:1)(1 : 0 : 0),\, (0 : 0 : 1)

magma: [C![0,0,1],C![1,0,0]]; // minimal model
 
magma: [C![0,0,1],C![1,0,0]]; // simplified model
 

Number of rational Weierstrass points: 22

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator D0D_0 Height Order
(0:0:1)(1:0:0)(0 : 0 : 1) - (1 : 0 : 0) xx == 0,0, yy == 00 00 22
D02(1:0:0)D_0 - 2 \cdot(1 : 0 : 0) x2+2z2x^2 + 2z^2 == 0,0, yy == 00 00 22
Generator D0D_0 Height Order
(0:0:1)(1:0:0)(0 : 0 : 1) - (1 : 0 : 0) xx == 0,0, yy == 00 00 22
D02(1:0:0)D_0 - 2 \cdot(1 : 0 : 0) x2+2z2x^2 + 2z^2 == 0,0, yy == 00 00 22
Generator D0D_0 Height Order
(0:0:1)(1:0:0)(0 : 0 : 1) - (1 : 0 : 0) xx == 0,0, yy == 00 00 22
D02(1:0:0)D_0 - 2 \cdot(1 : 0 : 0) x2+2z2x^2 + 2z^2 == 0,0, yy == 00 00 22

2-torsion field: Q(ζ8)\Q(\zeta_{8})

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: 00
Mordell-Weil rank: 00
2-Selmer rank:22
Regulator: 1 1
Real period: 8.427706 8.427706
Tamagawa product: 2 2
Torsion order:4 4
Leading coefficient: 1.053463 1.053463
Analytic order of Ш: 1 1   (rounded)
Order of Ш:square

Local invariants

Prime ord(NN) ord(Δ\Delta) Tamagawa L-factor Cluster picture
22 1414 1515 22 11

Galois representations

For primes 5\ell \ge 5 the Galois representation data has not been computed for this curve since it is not generic.

For primes 3\ell \le 3, the image of the mod-\ell Galois representation is listed in the table below, whenever it is not all of GSp(4,F)\GSp(4,\F_\ell).

Prime \ell mod-\ell image Is torsion prime?
22 2.180.3 yes
33 3.270.1 no

Sato-Tate group

ST\mathrm{ST}\simeq J(E4)J(E_4)
ST0\mathrm{ST}^0\simeq SU(2)\mathrm{SU}(2)

Decomposition of the Jacobian

Splits over the number field Q(b)\Q (b) \simeq 4.2.2048.1 with defining polynomial:
  x42x^{4} - 2

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  y2=x3g4/48xg6/864y^2 = x^3 - g_4 / 48 x - g_6 / 864 with
  g4=160b2144g_4 = 160 b^{2} - 144
  g6=1792b3+3456bg_6 = -1792 b^{3} + 3456 b
   Conductor norm: 32
  y2=x3g4/48xg6/864y^2 = x^3 - g_4 / 48 x - g_6 / 864 with
  g4=160b2144g_4 = 160 b^{2} - 144
  g6=1792b33456bg_6 = 1792 b^{3} - 3456 b
   Conductor norm: 32

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of GL2\GL_2-type over Q\Q

Endomorphism ring over Q\Q:

End(J)\End (J_{})\simeqZ\Z
End(J)Q\End (J_{}) \otimes \Q \simeqQ\Q
End(J)R\End (J_{}) \otimes \R\simeq R\R

Smallest field over which all endomorphisms are defined:
Galois number field K=Q(a)K = \Q (a) \simeq 8.0.16777216.2 with defining polynomial x84x6+8x44x2+1x^{8} - 4 x^{6} + 8 x^{4} - 4 x^{2} + 1

Not of GL2\GL_2-type over Q\overline{\Q}

Endomorphism ring over Q\overline{\Q}:

End(JQ)\End (J_{\overline{\Q}})\simeqa non-Eichler order of index 44 in a maximal order of End(JQ)Q\End (J_{\overline{\Q}}) \otimes \Q
End(JQ)Q\End (J_{\overline{\Q}}) \otimes \Q \simeqM2(\mathrm{M}_2(Q\Q))
End(JQ)R\End (J_{\overline{\Q}}) \otimes \R\simeq M2(R)\mathrm{M}_2 (\R)

Remainder of the endomorphism lattice by field

Over subfield FF \simeq Q(1)\Q(\sqrt{-1}) with generator 23a673a4+143a243\frac{2}{3} a^{6} - \frac{7}{3} a^{4} + \frac{14}{3} a^{2} - \frac{4}{3} with minimal polynomial x2+1x^{2} + 1:

End(JF)\End (J_{F})\simeqZ[1]\Z [\sqrt{-1}]
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ(1)\Q(\sqrt{-1})
End(JF)R\End (J_{F}) \otimes \R\simeq C\C
  Sato Tate group: E4E_4
  Of GL2\GL_2-type, simple

Over subfield FF \simeq Q(2)\Q(\sqrt{2}) with generator 13a6+23a413a243-\frac{1}{3} a^{6} + \frac{2}{3} a^{4} - \frac{1}{3} a^{2} - \frac{4}{3} with minimal polynomial x22x^{2} - 2:

End(JF)\End (J_{F})\simeqZ\Z
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ\Q
End(JF)R\End (J_{F}) \otimes \R\simeq R\R
  Sato Tate group: J(E2)J(E_2)
  Not of GL2\GL_2-type, simple

Over subfield FF \simeq Q(2)\Q(\sqrt{-2}) with generator a64a4+7a22a^{6} - 4 a^{4} + 7 a^{2} - 2 with minimal polynomial x2+2x^{2} + 2:

End(JF)\End (J_{F})\simeqZ\Z
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ\Q
End(JF)R\End (J_{F}) \otimes \R\simeq R\R
  Sato Tate group: J(E2)J(E_2)
  Not of GL2\GL_2-type, simple

Over subfield FF \simeq 4.2.2048.1 with generator 43a7143a5+253a353a\frac{4}{3} a^{7} - \frac{14}{3} a^{5} + \frac{25}{3} a^{3} - \frac{5}{3} a with minimal polynomial x42x^{4} - 2:

End(JF)\End (J_{F})\simeqan order of index 22 in Z×Z\Z \times \Z
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ\Q ×\times Q\Q
End(JF)R\End (J_{F}) \otimes \R\simeq R×R\R \times \R
  Sato Tate group: J(E1)J(E_1)
  Of GL2\GL_2-type, not simple

Over subfield FF \simeq 4.0.2048.1 with generator a7+4a58a3+3a-a^{7} + 4 a^{5} - 8 a^{3} + 3 a with minimal polynomial x4+2x^{4} + 2:

End(JF)\End (J_{F})\simeqZ[2]\Z [\sqrt{2}]
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ(2)\Q(\sqrt{2})
End(JF)R\End (J_{F}) \otimes \R\simeq R×R\R \times \R
  Sato Tate group: J(E1)J(E_1)
  Of GL2\GL_2-type, simple

Over subfield FF \simeq 4.0.2048.1 with generator 23a773a5+113a3+23a\frac{2}{3} a^{7} - \frac{7}{3} a^{5} + \frac{11}{3} a^{3} + \frac{2}{3} a with minimal polynomial x4+2x^{4} + 2:

End(JF)\End (J_{F})\simeqZ[2]\Z [\sqrt{2}]
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ(2)\Q(\sqrt{2})
End(JF)R\End (J_{F}) \otimes \R\simeq R×R\R \times \R
  Sato Tate group: J(E1)J(E_1)
  Of GL2\GL_2-type, simple

Over subfield FF \simeq 4.2.2048.1 with generator 13a753a5+103a383a\frac{1}{3} a^{7} - \frac{5}{3} a^{5} + \frac{10}{3} a^{3} - \frac{8}{3} a with minimal polynomial x42x^{4} - 2:

End(JF)\End (J_{F})\simeqan order of index 22 in Z×Z\Z \times \Z
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ\Q ×\times Q\Q
End(JF)R\End (J_{F}) \otimes \R\simeq R×R\R \times \R
  Sato Tate group: J(E1)J(E_1)
  Of GL2\GL_2-type, not simple

Over subfield FF \simeq Q(ζ8)\Q(\zeta_{8}) with generator 13a653a4+103a253\frac{1}{3} a^{6} - \frac{5}{3} a^{4} + \frac{10}{3} a^{2} - \frac{5}{3} with minimal polynomial x4+1x^{4} + 1:

End(JF)\End (J_{F})\simeqZ[1]\Z [\sqrt{-1}]
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ(1)\Q(\sqrt{-1})
End(JF)R\End (J_{F}) \otimes \R\simeq C\C
  Sato Tate group: E2E_2
  Of GL2\GL_2-type, simple

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);