Properties

Label 256.a.512.1
Conductor 256256
Discriminant 512-512
Mordell-Weil group Z/2ZZ/10Z\Z/{2}\Z \oplus \Z/{10}\Z
Sato-Tate group E4E_4
End(JQ)R\End(J_{\overline{\Q}}) \otimes \R M2(R)\mathrm{M}_2(\R)
End(JQ)Q\End(J_{\overline{\Q}}) \otimes \Q M2(Q)\mathrm{M}_2(\Q)
End(J)Q\End(J) \otimes \Q CM\mathsf{CM}
Q\overline{\Q}-simple no
GL2\mathrm{GL}_2-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

This is a model for the modular curve X1(16)X_1(16).

Minimal equation

Minimal equation

Simplified equation

y2+y=2x53x4+x3+x2xy^2 + y = 2x^5 - 3x^4 + x^3 + x^2 - x (homogenize, simplify)
y2+z3y=2x5z3x4z2+x3z3+x2z4xz5y^2 + z^3y = 2x^5z - 3x^4z^2 + x^3z^3 + x^2z^4 - xz^5 (dehomogenize, simplify)
y2=8x512x4+4x3+4x24x+1y^2 = 8x^5 - 12x^4 + 4x^3 + 4x^2 - 4x + 1 (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, 1, 1, -3, 2]), R([1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, 1, 1, -3, 2], R![1]);
 
sage: X = HyperellipticCurve(R([1, -4, 4, 4, -12, 8]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: N N  ==  256256 == 28 2^{8}
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: Δ \Delta  ==  512-512 == 29 - 2^{9}
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

I2 I_2  == 2626 ==  213 2 \cdot 13
I4 I_4  == 2-2 ==  2 -2
I6 I_6  == 4040 ==  235 2^{3} \cdot 5
I10 I_{10}  == 22 ==  2 2
J2 J_2  == 5252 ==  2213 2^{2} \cdot 13
J4 J_4  == 118118 ==  259 2 \cdot 59
J6 J_6  == 36-36 ==  2232 - 2^{2} \cdot 3^{2}
J8 J_8  == 3949-3949 ==  11359 - 11 \cdot 359
J10 J_{10}  == 512512 ==  29 2^{9}
g1 g_1  == 742586742586
g2 g_2  == 129623/4129623/4
g3 g_3  == 1521/8-1521/8

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

Aut(X)\mathrm{Aut}(X)\simeq C4C_4
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
Aut(XQ)\mathrm{Aut}(X_{\overline{\Q}})\simeq D4D_4
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: (1:0:0),(0:0:1),(0:1:1),(1:0:1),(1:1:1),(1:4:2)(1 : 0 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1),\, (1 : 0 : 1),\, (1 : -1 : 1),\, (1 : -4 : 2)
All points: (1:0:0),(0:0:1),(0:1:1),(1:0:1),(1:1:1),(1:4:2)(1 : 0 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1),\, (1 : 0 : 1),\, (1 : -1 : 1),\, (1 : -4 : 2)
All points: (1:0:0),(0:1:1),(0:1:1),(1:1:1),(1:1:1),(1:0:2)(1 : 0 : 0),\, (0 : -1 : 1),\, (0 : 1 : 1),\, (1 : -1 : 1),\, (1 : 1 : 1),\, (1 : 0 : 2)

magma: [C![0,-1,1],C![0,0,1],C![1,-4,2],C![1,-1,1],C![1,0,0],C![1,0,1]]; // minimal model
 
magma: [C![0,-1,1],C![0,1,1],C![1,0,2],C![1,-1,1],C![1,0,0],C![1,1,1]]; // simplified model
 

Number of rational Weierstrass points: 22

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: Z/2ZZ/10Z\Z/{2}\Z \oplus \Z/{10}\Z

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator D0D_0 Height Order
(1:4:2)(1:0:0)(1 : -4 : 2) - (1 : 0 : 0) 2xz2x - z == 0,0, 2y2y == z3-z^3 00 22
(1:0:1)(1:0:0)(1 : 0 : 1) - (1 : 0 : 0) xzx - z == 0,0, yy == 00 00 1010
Generator D0D_0 Height Order
(1:4:2)(1:0:0)(1 : -4 : 2) - (1 : 0 : 0) 2xz2x - z == 0,0, 2y2y == z3-z^3 00 22
(1:0:1)(1:0:0)(1 : 0 : 1) - (1 : 0 : 0) xzx - z == 0,0, yy == 00 00 1010
Generator D0D_0 Height Order
D02(1:0:0)D_0 - 2 \cdot(1 : 0 : 0) 2xz2x - z == 0,0, 2y2y == z3-z^3 00 22
(1:1:1)(1:0:0)(1 : 1 : 1) - (1 : 0 : 0) xzx - z == 0,0, yy == z3z^3 00 1010

2-torsion field: Q(ζ8)\Q(\zeta_{8})

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: 00
Mordell-Weil rank: 00
2-Selmer rank:22
Regulator: 1 1
Real period: 26.84182 26.84182
Tamagawa product: 2 2
Torsion order:20 20
Leading coefficient: 0.134209 0.134209
Analytic order of Ш: 1 1   (rounded)
Order of Ш:square

Local invariants

Prime ord(NN) ord(Δ\Delta) Tamagawa L-factor Cluster picture
22 88 99 22 1+2T+2T21 + 2 T + 2 T^{2}

Galois representations

For primes 5\ell \ge 5 the Galois representation data has not been computed for this curve since it is not generic.

For primes 3\ell \le 3, the image of the mod-\ell Galois representation is listed in the table below, whenever it is not all of GSp(4,F)\GSp(4,\F_\ell).

Prime \ell mod-\ell image Is torsion prime?
22 2.180.3 yes
33 3.540.6 no

Sato-Tate group

ST\mathrm{ST}\simeq E4E_4
ST0\mathrm{ST}^0\simeq SU(2)\mathrm{SU}(2)

Decomposition of the Jacobian

Splits over the number field Q(b)\Q (b) \simeq Q(ζ16)+\Q(\zeta_{16})^+ with defining polynomial:
  x44x2+2x^{4} - 4 x^{2} + 2

Decomposes up to isogeny as the square of the elliptic curve isogeny class:
  Elliptic curve isogeny class 4.4.2048.1-1.1-a

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of GL2\GL_2-type over Q\Q

Endomorphism ring over Q\Q:

End(J)\End (J_{})\simeqZ[1]\Z [\sqrt{-1}]
End(J)Q\End (J_{}) \otimes \Q \simeqQ(1)\Q(\sqrt{-1})
End(J)R\End (J_{}) \otimes \R\simeq C\C

Smallest field over which all endomorphisms are defined:
Galois number field K=Q(a)K = \Q (a) \simeq Q(ζ16)+\Q(\zeta_{16})^+ with defining polynomial x44x2+2x^{4} - 4 x^{2} + 2

Not of GL2\GL_2-type over Q\overline{\Q}

Endomorphism ring over Q\overline{\Q}:

End(JQ)\End (J_{\overline{\Q}})\simeqa non-Eichler order of index 44 in a maximal order of End(JQ)Q\End (J_{\overline{\Q}}) \otimes \Q
End(JQ)Q\End (J_{\overline{\Q}}) \otimes \Q \simeqM2(\mathrm{M}_2(Q\Q))
End(JQ)R\End (J_{\overline{\Q}}) \otimes \R\simeq M2(R)\mathrm{M}_2 (\R)

Remainder of the endomorphism lattice by field

Over subfield FF \simeq Q(2)\Q(\sqrt{2}) with generator a22a^{2} - 2 with minimal polynomial x22x^{2} - 2:

End(JF)\End (J_{F})\simeqZ[1]\Z [\sqrt{-1}]
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ(1)\Q(\sqrt{-1})
End(JF)R\End (J_{F}) \otimes \R\simeq C\C
  Sato Tate group: E2E_2
  Of GL2\GL_2-type, simple

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);