This is a model for the modular curve X1(16).
y2+y=2x5−3x4+x3+x2−x |
(homogenize, simplify) |
y2+z3y=2x5z−3x4z2+x3z3+x2z4−xz5 |
(dehomogenize, simplify) |
y2=8x5−12x4+4x3+4x2−4x+1 |
(homogenize, minimize) |
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, 1, 1, -3, 2]), R([1]));
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, 1, 1, -3, 2], R![1]);
sage: X = HyperellipticCurve(R([1, -4, 4, 4, -12, 8]))
magma: X,pi:= SimplifiedModel(C);
Conductor: | N | = | 256 | = | 28 |
magma: Conductor(LSeries(C)); Factorization($1);
|
Discriminant: | Δ | = | −512 | = | −29 |
magma: Discriminant(C); Factorization(Integers()!$1);
|
I2 | = | 26 | = |
2⋅13 |
I4 | = | −2 | = |
−2 |
I6 | = | 40 | = |
23⋅5 |
I10 | = | 2 | = |
2 |
J2 | = | 52 | = |
22⋅13 |
J4 | = | 118 | = |
2⋅59 |
J6 | = | −36 | = |
−22⋅32 |
J8 | = | −3949 | = |
−11⋅359 |
J10 | = | 512 | = |
29 |
g1 | = | 742586 |
g2 | = | 129623/4 |
g3 | = | −1521/8 |
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
Aut(X) | ≃ |
C4 |
magma: AutomorphismGroup(C); IdentifyGroup($1);
|
Aut(XQ) | ≃ |
D4 |
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
All points:
(1:0:0),(0:0:1),(0:−1:1),(1:0:1),(1:−1:1),(1:−4:2)
All points:
(1:0:0),(0:0:1),(0:−1:1),(1:0:1),(1:−1:1),(1:−4:2)
All points:
(1:0:0),(0:−1:1),(0:1:1),(1:−1:1),(1:1:1),(1:0:2)
magma: [C![0,-1,1],C![0,0,1],C![1,-4,2],C![1,-1,1],C![1,0,0],C![1,0,1]]; // minimal model
magma: [C![0,-1,1],C![0,1,1],C![1,0,2],C![1,-1,1],C![1,0,0],C![1,1,1]]; // simplified model
Number of rational Weierstrass points: 2
magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
This curve is locally solvable everywhere.
magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
Group structure: Z/2Z⊕Z/10Z
magma: MordellWeilGroupGenus2(Jacobian(C));
Generator |
D0 |
|
|
|
|
|
Height |
Order |
(1:−4:2)−(1:0:0) |
2x−z |
= |
0, |
2y |
= |
−z3 |
0 |
2 |
(1:0:1)−(1:0:0) |
x−z |
= |
0, |
y |
= |
0 |
0 |
10 |
Generator |
D0 |
|
|
|
|
|
Height |
Order |
(1:−4:2)−(1:0:0) |
2x−z |
= |
0, |
2y |
= |
−z3 |
0 |
2 |
(1:0:1)−(1:0:0) |
x−z |
= |
0, |
y |
= |
0 |
0 |
10 |
Generator |
D0 |
|
|
|
|
|
Height |
Order |
D0−2⋅(1:0:0) |
2x−z |
= |
0, |
2y |
= |
−z3 |
0 |
2 |
(1:1:1)−(1:0:0) |
x−z |
= |
0, |
y |
= |
z3 |
0 |
10 |
2-torsion field: Q(ζ8)
For primes ℓ≥5 the Galois representation data has not been computed for this curve since it is not generic.
For primes ℓ≤3, the image of the mod-ℓ Galois representation is listed in the table below, whenever it is not all of GSp(4,Fℓ).
ST | ≃ | E4 |
ST0 | ≃ | SU(2) |
Splits over the number field Q(b)≃ Q(ζ16)+ with defining polynomial:
x4−4x2+2
Decomposes up to isogeny as the square of the elliptic curve isogeny class:
Elliptic curve isogeny class 4.4.2048.1-1.1-a
magma: HeuristicDecompositionFactors(C);
Of GL2-type over Q
Endomorphism ring over Q:
End(J) | ≃ | Z[−1] |
End(J)⊗Q | ≃ | Q(−1) |
End(J)⊗R | ≃ | C |
Smallest field over which all endomorphisms are defined:
Galois number field K=Q(a)≃ Q(ζ16)+ with defining polynomial x4−4x2+2
Not of GL2-type over Q
Endomorphism ring over Q:
End(JQ) | ≃ | a non-Eichler order of index 4 in a maximal order of End(JQ)⊗Q |
End(JQ)⊗Q | ≃ | M2(Q) |
End(JQ)⊗R | ≃ | M2(R) |
Over subfield F≃ Q(2) with generator a2−2 with minimal polynomial x2−2:
End(JF) | ≃ | Z[−1] |
End(JF)⊗Q | ≃ | Q(−1) |
End(JF)⊗R | ≃ | C |
Sato Tate group:
E2 Of
GL2-type, simple
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);