Minimal equation
Minimal equation
Simplified equation
$y^2 = x^5 - x^4 - x^2 - x$ | (homogenize, simplify) |
$y^2 = x^5z - x^4z^2 - x^2z^4 - xz^5$ | (dehomogenize, simplify) |
$y^2 = x^5 - x^4 - x^2 - x$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(25600\) | \(=\) | \( 2^{10} \cdot 5^{2} \) | magma: Conductor(LSeries(C)); Factorization($1);
|
Discriminant: | \( \Delta \) | \(=\) | \(-128000\) | \(=\) | \( - 2^{10} \cdot 5^{3} \) | magma: Discriminant(C); Factorization(Integers()!$1);
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(56\) | \(=\) | \( 2^{3} \cdot 7 \) |
\( I_4 \) | \(=\) | \(-80\) | \(=\) | \( - 2^{4} \cdot 5 \) |
\( I_6 \) | \(=\) | \(-260\) | \(=\) | \( - 2^{2} \cdot 5 \cdot 13 \) |
\( I_{10} \) | \(=\) | \(500\) | \(=\) | \( 2^{2} \cdot 5^{3} \) |
\( J_2 \) | \(=\) | \(112\) | \(=\) | \( 2^{4} \cdot 7 \) |
\( J_4 \) | \(=\) | \(736\) | \(=\) | \( 2^{5} \cdot 23 \) |
\( J_6 \) | \(=\) | \(-1536\) | \(=\) | \( - 2^{9} \cdot 3 \) |
\( J_8 \) | \(=\) | \(-178432\) | \(=\) | \( - 2^{8} \cdot 17 \cdot 41 \) |
\( J_{10} \) | \(=\) | \(128000\) | \(=\) | \( 2^{10} \cdot 5^{3} \) |
\( g_1 \) | \(=\) | \(17210368/125\) | ||
\( g_2 \) | \(=\) | \(1009792/125\) | ||
\( g_3 \) | \(=\) | \(-18816/125\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_4$ | magma: AutomorphismGroup(C); IdentifyGroup($1);
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $D_4$ | magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
Rational points
Number of rational Weierstrass points: \(2\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{2}\Z \oplus \Z/{2}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - 2 \cdot(1 : 0 : 0)\) | \(x^2 - xz - z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
\((0 : 0 : 1) - (1 : 0 : 0)\) | \(x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - 2 \cdot(1 : 0 : 0)\) | \(x^2 - xz - z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
\((0 : 0 : 1) - (1 : 0 : 0)\) | \(x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - 2 \cdot(1 : 0 : 0)\) | \(x^2 - xz - z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
\((0 : 0 : 1) - (1 : 0 : 0)\) | \(x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
2-torsion field: \(\Q(i, \sqrt{5})\)
BSD invariants
Hasse-Weil conjecture: | verified |
Analytic rank: | \(0\) |
Mordell-Weil rank: | \(0\) |
2-Selmer rank: | \(2\) |
Regulator: | \( 1 \) |
Real period: | \( 9.947770 \) |
Tamagawa product: | \( 2 \) |
Torsion order: | \( 4 \) |
Leading coefficient: | \( 1.243471 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | L-factor | Cluster picture |
---|---|---|---|---|---|
\(2\) | \(10\) | \(10\) | \(1\) | \(1\) | |
\(5\) | \(2\) | \(3\) | \(2\) | \(1 - 2 T + 5 T^{2}\) |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.180.3 | yes |
\(3\) | 3.540.6 | no |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $E_4$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Splits over the number field \(\Q (b) \simeq \) \(\Q(\zeta_{20})^+\) with defining polynomial:
\(x^{4} - 5 x^{2} + 5\)
Decomposes up to isogeny as the square of the elliptic curve isogeny class:
\(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
\(g_4 = -\frac{32303200}{130321} b^{3} + \frac{61624800}{130321} b^{2} + \frac{44011200}{130321} b - \frac{84012560}{130321}\)
\(g_6 = -\frac{530918514880}{47045881} b^{3} + \frac{1009835128000}{47045881} b^{2} + \frac{734310067200}{47045881} b - \frac{1396419152000}{47045881}\)
Conductor norm: 4096
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | \(\Z [\sqrt{-1}]\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-1}) \) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\C\) |
Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) \(\Q(\zeta_{20})^+\) with defining polynomial \(x^{4} - 5 x^{2} + 5\)
Not of \(\GL_2\)-type over \(\overline{\Q}\)
Endomorphism ring over \(\overline{\Q}\):
\(\End (J_{\overline{\Q}})\) | \(\simeq\) | a non-Eichler order of index \(4\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\) |
\(\End (J_{\overline{\Q}}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
\(\End (J_{\overline{\Q}}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
Remainder of the endomorphism lattice by field
Over subfield \(F \simeq \) \(\Q(\sqrt{5}) \) with generator \(a^{2} - 2\) with minimal polynomial \(x^{2} - x - 1\):
\(\End (J_{F})\) | \(\simeq\) | \(\Z [\sqrt{-1}]\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-1}) \) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\C\) |
Of \(\GL_2\)-type, simple