y2+y=x5−x4−39x3+10x2+272x−306 |
(homogenize, simplify) |
y2+z3y=x5z−x4z2−39x3z3+10x2z4+272xz5−306z6 |
(dehomogenize, simplify) |
y2=4x5−4x4−156x3+40x2+1088x−1223 |
(homogenize, minimize) |
sage:R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-306, 272, 10, -39, -1, 1]), R([1]));
magma:R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-306, 272, 10, -39, -1, 1], R![1]);
sage:X = HyperellipticCurve(R([-1223, 1088, 40, -156, -4, 4]))
magma:X,pi:= SimplifiedModel(C);
Conductor: | N | = | 461 | = | 461 |
magma:Conductor(LSeries(C)); Factorization($1);
|
Discriminant: | Δ | = | 461 | = | 461 |
magma:Discriminant(C); Factorization(Integers()!$1);
|
I2 | = | 80664 | = |
23⋅3⋅3361 |
I4 | = | 166117104 | = |
24⋅32⋅29⋅39779 |
I6 | = | 3752725952952 | = |
23⋅32⋅71⋅1319⋅556559 |
I10 | = | 1844 | = |
22⋅461 |
J2 | = | 40332 | = |
22⋅3⋅3361 |
J4 | = | 40091742 | = |
2⋅32⋅31⋅71849 |
J6 | = | 45075737276 | = |
22⋅83⋅135770293 |
J8 | = | 52661714805267 | = |
3⋅613⋅8819⋅3247087 |
J10 | = | 461 | = |
461 |
g1 | = | 106720731303787612818432/461 |
g2 | = | 2630293443843585469056/461 |
g3 | = | 73323359651716069824/461 |
sage:C.igusa_clebsch_invariants(); [factor(a) for a in _]
magma:IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
Aut(X) | ≃ |
C2 |
magma:AutomorphismGroup(C); IdentifyGroup($1);
|
Aut(XQ) | ≃ |
C2 |
magma:AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
magma:[C![1,0,0]]; // minimal model
magma:[C![1,0,0]]; // simplified model
Number of rational Weierstrass points: 1
magma:#Roots(HyperellipticPolynomials(SimplifiedModel(C)));
This curve is locally solvable everywhere.
magma:f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
Group structure: trivial
magma:MordellWeilGroupGenus2(Jacobian(C));
2-torsion field: 5.1.7376.1
The mod-ℓ Galois representation
has maximal image GSp(4,Fℓ)
for all primes ℓ
except those listed.
Simple over Q
magma:HeuristicDecompositionFactors(C);
Not of GL2-type over Q
Endomorphism ring over Q:
End(J) | ≃ | Z |
End(J)⊗Q | ≃ | Q |
End(J)⊗R | ≃ | R |
All Q-endomorphisms of the Jacobian are defined over Q.
magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
magma:HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
magma:HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);