Minimal equation
Minimal equation
Simplified equation
$y^2 + (x^3 + 1)y = x^5 + x^4 + 5x^2 + 12x + 8$ | (homogenize, simplify) |
$y^2 + (x^3 + z^3)y = x^5z + x^4z^2 + 5x^2z^4 + 12xz^5 + 8z^6$ | (dehomogenize, simplify) |
$y^2 = x^6 + 4x^5 + 4x^4 + 2x^3 + 20x^2 + 48x + 33$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(588\) | \(=\) | \( 2^{2} \cdot 3 \cdot 7^{2} \) | magma: Conductor(LSeries(C)); Factorization($1);
|
Discriminant: | \( \Delta \) | \(=\) | \(-18816\) | \(=\) | \( - 2^{7} \cdot 3 \cdot 7^{2} \) | magma: Discriminant(C); Factorization(Integers()!$1);
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(748\) | \(=\) | \( 2^{2} \cdot 11 \cdot 17 \) |
\( I_4 \) | \(=\) | \(11545\) | \(=\) | \( 5 \cdot 2309 \) |
\( I_6 \) | \(=\) | \(2902787\) | \(=\) | \( 2902787 \) |
\( I_{10} \) | \(=\) | \(2408448\) | \(=\) | \( 2^{14} \cdot 3 \cdot 7^{2} \) |
\( J_2 \) | \(=\) | \(187\) | \(=\) | \( 11 \cdot 17 \) |
\( J_4 \) | \(=\) | \(976\) | \(=\) | \( 2^{4} \cdot 61 \) |
\( J_6 \) | \(=\) | \(-192\) | \(=\) | \( - 2^{6} \cdot 3 \) |
\( J_8 \) | \(=\) | \(-247120\) | \(=\) | \( - 2^{4} \cdot 5 \cdot 3089 \) |
\( J_{10} \) | \(=\) | \(18816\) | \(=\) | \( 2^{7} \cdot 3 \cdot 7^{2} \) |
\( g_1 \) | \(=\) | \(228669389707/18816\) | ||
\( g_2 \) | \(=\) | \(398891383/1176\) | ||
\( g_3 \) | \(=\) | \(-34969/98\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2^2$ | magma: AutomorphismGroup(C); IdentifyGroup($1);
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2^2$ | magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
Rational points
Number of rational Weierstrass points: \(0\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{24}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((-2 : 4 : 1) + (-1 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) | \((x + z) (x + 2z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-5xz^2 - 6z^3\) | \(0\) | \(24\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((-2 : 4 : 1) + (-1 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) | \((x + z) (x + 2z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-5xz^2 - 6z^3\) | \(0\) | \(24\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((-2 : 1 : 1) + (-1 : -2 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) | \((x + z) (x + 2z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 - 10xz^2 - 11z^3\) | \(0\) | \(24\) |
2-torsion field: 8.0.12446784.1
BSD invariants
Hasse-Weil conjecture: | verified |
Analytic rank: | \(0\) |
Mordell-Weil rank: | \(0\) |
2-Selmer rank: | \(1\) |
Regulator: | \( 1 \) |
Real period: | \( 20.65814 \) |
Tamagawa product: | \( 8 \) |
Torsion order: | \( 24 \) |
Leading coefficient: | \( 0.286918 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | L-factor | Cluster picture |
---|---|---|---|---|---|
\(2\) | \(2\) | \(7\) | \(8\) | \(( 1 - T )( 1 + T )\) | |
\(3\) | \(1\) | \(1\) | \(1\) | \(( 1 + T )( 1 + 2 T + 3 T^{2} )\) | |
\(7\) | \(2\) | \(2\) | \(1\) | \(( 1 - T )( 1 + T )\) |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.45.1 | yes |
\(3\) | 3.720.4 | yes |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\times\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Splits over \(\Q\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
Elliptic curve isogeny class 14.a
Elliptic curve isogeny class 42.a
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).