Properties

Label 630.a.34020.1
Conductor 630630
Discriminant 3402034020
Mordell-Weil group Z/2ZZ/2ZZ/4Z\Z/{2}\Z \oplus \Z/{2}\Z \oplus \Z/{4}\Z
Sato-Tate group SU(2)×SU(2)\mathrm{SU}(2)\times\mathrm{SU}(2)
End(JQ)R\End(J_{\overline{\Q}}) \otimes \R R×R\R \times \R
End(JQ)Q\End(J_{\overline{\Q}}) \otimes \Q Q×Q\Q \times \Q
End(J)Q\End(J) \otimes \Q Q×Q\Q \times \Q
Q\overline{\Q}-simple no
GL2\mathrm{GL}_2-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

y2+(x2+x)y=3x5+10x423x26x+15y^2 + (x^2 + x)y = 3x^5 + 10x^4 - 23x^2 - 6x + 15 (homogenize, simplify)
y2+(x2z+xz2)y=3x5z+10x4z223x2z46xz5+15z6y^2 + (x^2z + xz^2)y = 3x^5z + 10x^4z^2 - 23x^2z^4 - 6xz^5 + 15z^6 (dehomogenize, simplify)
y2=12x5+41x4+2x391x224x+60y^2 = 12x^5 + 41x^4 + 2x^3 - 91x^2 - 24x + 60 (homogenize, minimize)

Copy content sage:R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([15, -6, -23, 0, 10, 3]), R([0, 1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![15, -6, -23, 0, 10, 3], R![0, 1, 1]);
 
Copy content sage:X = HyperellipticCurve(R([60, -24, -91, 2, 41, 12]))
 
Copy content magma:X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: N N  ==  630630 == 23257 2 \cdot 3^{2} \cdot 5 \cdot 7
Copy content magma:Conductor(LSeries(C)); Factorization($1);
 
Discriminant: Δ \Delta  ==  3402034020 == 223557 2^{2} \cdot 3^{5} \cdot 5 \cdot 7
Copy content magma:Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

I2 I_2  == 2410024100 ==  2252241 2^{2} \cdot 5^{2} \cdot 241
I4 I_4  == 969793969793 ==  11131673 11 \cdot 131 \cdot 673
I6 I_6  == 74745032657474503265 ==  51494900653 5 \cdot 1494900653
I10 I_{10}  == 43545604354560 ==  293557 2^{9} \cdot 3^{5} \cdot 5 \cdot 7
J2 J_2  == 60256025 ==  52241 5^{2} \cdot 241
J4 J_4  == 14721181472118 ==  23733361 2 \cdot 3 \cdot 73 \cdot 3361
J6 J_6  == 470090880470090880 ==  27325789131 2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 89 \cdot 131
J8 J_8  == 166291536519166291536519 ==  33331149912413 3^{3} \cdot 331 \cdot 1499 \cdot 12413
J10 J_{10}  == 3402034020 ==  223557 2^{2} \cdot 3^{5} \cdot 5 \cdot 7
g1 g_1  == 1587871127345703125/68041587871127345703125/6804
g2 g_2  == 10732293030978125/113410732293030978125/1134
g3 g_3  == 13543327580000/2713543327580000/27

Copy content sage:C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
Copy content magma:IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

Aut(X)\mathrm{Aut}(X)\simeq C22C_2^2
Copy content magma:AutomorphismGroup(C); IdentifyGroup($1);
 
Aut(XQ)\mathrm{Aut}(X_{\overline{\Q}})\simeq C22C_2^2
Copy content magma:AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: (1:0:0),(1:1:1),(2:1:1),(5:15:3)(1 : 0 : 0),\, (1 : -1 : 1),\, (-2 : -1 : 1),\, (-5 : -15 : 3)
All points: (1:0:0),(1:1:1),(2:1:1),(5:15:3)(1 : 0 : 0),\, (1 : -1 : 1),\, (-2 : -1 : 1),\, (-5 : -15 : 3)
All points: (1:0:0),(1:0:1),(2:0:1),(5:0:3)(1 : 0 : 0),\, (1 : 0 : 1),\, (-2 : 0 : 1),\, (-5 : 0 : 3)

Copy content magma:[C![-5,-15,3],C![-2,-1,1],C![1,-1,1],C![1,0,0]]; // minimal model
 
Copy content magma:[C![-5,0,3],C![-2,0,1],C![1,0,1],C![1,0,0]]; // simplified model
 

Number of rational Weierstrass points: 44

Copy content magma:#Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

Copy content magma:f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: Z/2ZZ/2ZZ/4Z\Z/{2}\Z \oplus \Z/{2}\Z \oplus \Z/{4}\Z

Copy content magma:MordellWeilGroupGenus2(Jacobian(C));
 

Generator D0D_0 Height Order
(2:1:1)+(1:1:1)2(1:0:0)(-2 : -1 : 1) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0) (xz)(x+2z)(x - z) (x + 2z) == 0,0, yy == z3-z^3 00 22
(2:1:1)(1:0:0)(-2 : -1 : 1) - (1 : 0 : 0) x+2zx + 2z == 0,0, yy == z3-z^3 00 22
D02(1:0:0)D_0 - 2 \cdot(1 : 0 : 0) 3x2+xz7z23x^2 + xz - 7z^2 == 0,0, yy == xz2+z3xz^2 + z^3 00 44
Generator D0D_0 Height Order
(2:1:1)+(1:1:1)2(1:0:0)(-2 : -1 : 1) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0) (xz)(x+2z)(x - z) (x + 2z) == 0,0, yy == z3-z^3 00 22
(2:1:1)(1:0:0)(-2 : -1 : 1) - (1 : 0 : 0) x+2zx + 2z == 0,0, yy == z3-z^3 00 22
D02(1:0:0)D_0 - 2 \cdot(1 : 0 : 0) 3x2+xz7z23x^2 + xz - 7z^2 == 0,0, yy == xz2+z3xz^2 + z^3 00 44
Generator D0D_0 Height Order
(2:0:1)+(1:0:1)2(1:0:0)(-2 : 0 : 1) + (1 : 0 : 1) - 2 \cdot(1 : 0 : 0) (xz)(x+2z)(x - z) (x + 2z) == 0,0, yy == x2z+xz22z3x^2z + xz^2 - 2z^3 00 22
(2:0:1)(1:0:0)(-2 : 0 : 1) - (1 : 0 : 0) x+2zx + 2z == 0,0, yy == x2z+xz22z3x^2z + xz^2 - 2z^3 00 22
D02(1:0:0)D_0 - 2 \cdot(1 : 0 : 0) 3x2+xz7z23x^2 + xz - 7z^2 == 0,0, yy == x2z+3xz2+2z3x^2z + 3xz^2 + 2z^3 00 44

2-torsion field: Q(105)\Q(\sqrt{105})

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: 00
Mordell-Weil rank: 00
2-Selmer rank:33
Regulator: 1 1
Real period: 19.47088 19.47088
Tamagawa product: 4 4
Torsion order:16 16
Leading coefficient: 0.304232 0.304232
Analytic order of Ш: 1 1   (rounded)
Order of Ш:square

Local invariants

Prime ord(NN) ord(Δ\Delta) Tamagawa Root number* L-factor Cluster picture Tame reduction?
22 11 22 22 1-1^* (1T)(1+T+2T2)( 1 - T )( 1 + T + 2 T^{2} ) yes
33 22 55 22 11 (1+T)2( 1 + T )^{2} yes
55 11 11 11 1-1 (1T)(1+2T+5T2)( 1 - T )( 1 + 2 T + 5 T^{2} ) yes
77 11 11 11 11 (1+T)(1+7T2)( 1 + T )( 1 + 7 T^{2} ) yes

Galois representations

For primes 5\ell \ge 5 the Galois representation data has not been computed for this curve since it is not generic.

For primes 3\ell \le 3, the image of the mod-\ell Galois representation is listed in the table below, whenever it is not all of GSp(4,F)\GSp(4,\F_\ell).

Prime \ell mod-\ell image Is torsion prime?
22 2.360.2 yes
33 3.90.1 no

Sato-Tate group

ST\mathrm{ST}\simeq SU(2)×SU(2)\mathrm{SU}(2)\times\mathrm{SU}(2)
ST0\mathrm{ST}^0\simeq SU(2)×SU(2)\mathrm{SU}(2)\times\mathrm{SU}(2)

Decomposition of the Jacobian

Splits over Q\Q

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 15.a
  Elliptic curve isogeny class 42.a

Copy content magma:HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of GL2\GL_2-type over Q\Q

Endomorphism ring over Q\Q:

End(J)\End (J_{})\simeqan order of index 22 in Z×Z\Z \times \Z
End(J)Q\End (J_{}) \otimes \Q \simeqQ\Q ×\times Q\Q
End(J)R\End (J_{}) \otimes \R\simeq R×R\R \times \R

All Q\overline{\Q}-endomorphisms of the Jacobian are defined over Q\Q.

Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

Copy content magma:HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

Copy content magma:HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);