y 2 + ( x 2 + x ) y = 3 x 5 + 10 x 4 − 23 x 2 − 6 x + 15 y^2 + (x^2 + x)y = 3x^5 + 10x^4 - 23x^2 - 6x + 15 y 2 + ( x 2 + x ) y = 3 x 5 + 1 0 x 4 − 2 3 x 2 − 6 x + 1 5
(homogenize , simplify )
y 2 + ( x 2 z + x z 2 ) y = 3 x 5 z + 10 x 4 z 2 − 23 x 2 z 4 − 6 x z 5 + 15 z 6 y^2 + (x^2z + xz^2)y = 3x^5z + 10x^4z^2 - 23x^2z^4 - 6xz^5 + 15z^6 y 2 + ( x 2 z + x z 2 ) y = 3 x 5 z + 1 0 x 4 z 2 − 2 3 x 2 z 4 − 6 x z 5 + 1 5 z 6
(dehomogenize , simplify )
y 2 = 12 x 5 + 41 x 4 + 2 x 3 − 91 x 2 − 24 x + 60 y^2 = 12x^5 + 41x^4 + 2x^3 - 91x^2 - 24x + 60 y 2 = 1 2 x 5 + 4 1 x 4 + 2 x 3 − 9 1 x 2 − 2 4 x + 6 0
(homogenize , minimize )
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([15, -6, -23, 0, 10, 3]), R([0, 1, 1]));
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![15, -6, -23, 0, 10, 3], R![0, 1, 1]);
sage: X = HyperellipticCurve(R([60, -24, -91, 2, 41, 12]))
magma: X,pi:= SimplifiedModel(C);
Conductor : N N N = = = 630 630 6 3 0 = = = 2 ⋅ 3 2 ⋅ 5 ⋅ 7 2 \cdot 3^{2} \cdot 5 \cdot 7 2 ⋅ 3 2 ⋅ 5 ⋅ 7
magma: Conductor(LSeries(C)); Factorization($1);
Discriminant : Δ \Delta Δ = = = 34020 34020 3 4 0 2 0 = = = 2 2 ⋅ 3 5 ⋅ 5 ⋅ 7 2^{2} \cdot 3^{5} \cdot 5 \cdot 7 2 2 ⋅ 3 5 ⋅ 5 ⋅ 7
magma: Discriminant(C); Factorization(Integers()!$1);
I 2 I_2 I 2 = = = 24100 24100 2 4 1 0 0 = = =
2 2 ⋅ 5 2 ⋅ 241 2^{2} \cdot 5^{2} \cdot 241 2 2 ⋅ 5 2 ⋅ 2 4 1
I 4 I_4 I 4 = = = 969793 969793 9 6 9 7 9 3 = = =
11 ⋅ 131 ⋅ 673 11 \cdot 131 \cdot 673 1 1 ⋅ 1 3 1 ⋅ 6 7 3
I 6 I_6 I 6 = = = 7474503265 7474503265 7 4 7 4 5 0 3 2 6 5 = = =
5 ⋅ 1494900653 5 \cdot 1494900653 5 ⋅ 1 4 9 4 9 0 0 6 5 3
I 10 I_{10} I 1 0 = = = 4354560 4354560 4 3 5 4 5 6 0 = = =
2 9 ⋅ 3 5 ⋅ 5 ⋅ 7 2^{9} \cdot 3^{5} \cdot 5 \cdot 7 2 9 ⋅ 3 5 ⋅ 5 ⋅ 7
J 2 J_2 J 2 = = = 6025 6025 6 0 2 5 = = =
5 2 ⋅ 241 5^{2} \cdot 241 5 2 ⋅ 2 4 1
J 4 J_4 J 4 = = = 1472118 1472118 1 4 7 2 1 1 8 = = =
2 ⋅ 3 ⋅ 73 ⋅ 3361 2 \cdot 3 \cdot 73 \cdot 3361 2 ⋅ 3 ⋅ 7 3 ⋅ 3 3 6 1
J 6 J_6 J 6 = = = 470090880 470090880 4 7 0 0 9 0 8 8 0 = = =
2 7 ⋅ 3 2 ⋅ 5 ⋅ 7 ⋅ 89 ⋅ 131 2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 89 \cdot 131 2 7 ⋅ 3 2 ⋅ 5 ⋅ 7 ⋅ 8 9 ⋅ 1 3 1
J 8 J_8 J 8 = = = 166291536519 166291536519 1 6 6 2 9 1 5 3 6 5 1 9 = = =
3 3 ⋅ 331 ⋅ 1499 ⋅ 12413 3^{3} \cdot 331 \cdot 1499 \cdot 12413 3 3 ⋅ 3 3 1 ⋅ 1 4 9 9 ⋅ 1 2 4 1 3
J 10 J_{10} J 1 0 = = = 34020 34020 3 4 0 2 0 = = =
2 2 ⋅ 3 5 ⋅ 5 ⋅ 7 2^{2} \cdot 3^{5} \cdot 5 \cdot 7 2 2 ⋅ 3 5 ⋅ 5 ⋅ 7
g 1 g_1 g 1 = = = 1587871127345703125 / 6804 1587871127345703125/6804 1 5 8 7 8 7 1 1 2 7 3 4 5 7 0 3 1 2 5 / 6 8 0 4
g 2 g_2 g 2 = = = 10732293030978125 / 1134 10732293030978125/1134 1 0 7 3 2 2 9 3 0 3 0 9 7 8 1 2 5 / 1 1 3 4
g 3 g_3 g 3 = = = 13543327580000 / 27 13543327580000/27 1 3 5 4 3 3 2 7 5 8 0 0 0 0 / 2 7
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
A u t ( X ) \mathrm{Aut}(X) A u t ( X ) ≃ \simeq ≃
C 2 2 C_2^2 C 2 2
magma: AutomorphismGroup(C); IdentifyGroup($1);
A u t ( X Q ‾ ) \mathrm{Aut}(X_{\overline{\Q}}) A u t ( X Q ) ≃ \simeq ≃
C 2 2 C_2^2 C 2 2
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
All points :
( 1 : 0 : 0 ) , ( 1 : − 1 : 1 ) , ( − 2 : − 1 : 1 ) , ( − 5 : − 15 : 3 ) (1 : 0 : 0),\, (1 : -1 : 1),\, (-2 : -1 : 1),\, (-5 : -15 : 3) ( 1 : 0 : 0 ) , ( 1 : − 1 : 1 ) , ( − 2 : − 1 : 1 ) , ( − 5 : − 1 5 : 3 )
All points :
( 1 : 0 : 0 ) , ( 1 : − 1 : 1 ) , ( − 2 : − 1 : 1 ) , ( − 5 : − 15 : 3 ) (1 : 0 : 0),\, (1 : -1 : 1),\, (-2 : -1 : 1),\, (-5 : -15 : 3) ( 1 : 0 : 0 ) , ( 1 : − 1 : 1 ) , ( − 2 : − 1 : 1 ) , ( − 5 : − 1 5 : 3 )
All points :
( 1 : 0 : 0 ) , ( 1 : 0 : 1 ) , ( − 2 : 0 : 1 ) , ( − 5 : 0 : 3 ) (1 : 0 : 0),\, (1 : 0 : 1),\, (-2 : 0 : 1),\, (-5 : 0 : 3) ( 1 : 0 : 0 ) , ( 1 : 0 : 1 ) , ( − 2 : 0 : 1 ) , ( − 5 : 0 : 3 )
magma: [C![-5,-15,3],C![-2,-1,1],C![1,-1,1],C![1,0,0]]; // minimal model
magma: [C![-5,0,3],C![-2,0,1],C![1,0,1],C![1,0,0]]; // simplified model
Number of rational Weierstrass points : 4 4 4
magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
This curve is locally solvable everywhere.
magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
Group structure : Z / 2 Z ⊕ Z / 2 Z ⊕ Z / 4 Z \Z/{2}\Z \oplus \Z/{2}\Z \oplus \Z/{4}\Z Z / 2 Z ⊕ Z / 2 Z ⊕ Z / 4 Z
magma: MordellWeilGroupGenus2(Jacobian(C));
Generator
D 0 D_0 D 0
Height
Order
( − 2 : − 1 : 1 ) + ( 1 : − 1 : 1 ) − 2 ⋅ ( 1 : 0 : 0 ) (-2 : -1 : 1) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0) ( − 2 : − 1 : 1 ) + ( 1 : − 1 : 1 ) − 2 ⋅ ( 1 : 0 : 0 )
( x − z ) ( x + 2 z ) (x - z) (x + 2z) ( x − z ) ( x + 2 z )
= = =
0 , 0, 0 ,
y y y
= = =
− z 3 -z^3 − z 3
0 0 0
2 2 2
( − 2 : − 1 : 1 ) − ( 1 : 0 : 0 ) (-2 : -1 : 1) - (1 : 0 : 0) ( − 2 : − 1 : 1 ) − ( 1 : 0 : 0 )
x + 2 z x + 2z x + 2 z
= = =
0 , 0, 0 ,
y y y
= = =
− z 3 -z^3 − z 3
0 0 0
2 2 2
D 0 − 2 ⋅ ( 1 : 0 : 0 ) D_0 - 2 \cdot(1 : 0 : 0) D 0 − 2 ⋅ ( 1 : 0 : 0 )
3 x 2 + x z − 7 z 2 3x^2 + xz - 7z^2 3 x 2 + x z − 7 z 2
= = =
0 , 0, 0 ,
y y y
= = =
x z 2 + z 3 xz^2 + z^3 x z 2 + z 3
0 0 0
4 4 4
Generator
D 0 D_0 D 0
Height
Order
( − 2 : − 1 : 1 ) + ( 1 : − 1 : 1 ) − 2 ⋅ ( 1 : 0 : 0 ) (-2 : -1 : 1) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0) ( − 2 : − 1 : 1 ) + ( 1 : − 1 : 1 ) − 2 ⋅ ( 1 : 0 : 0 )
( x − z ) ( x + 2 z ) (x - z) (x + 2z) ( x − z ) ( x + 2 z )
= = =
0 , 0, 0 ,
y y y
= = =
− z 3 -z^3 − z 3
0 0 0
2 2 2
( − 2 : − 1 : 1 ) − ( 1 : 0 : 0 ) (-2 : -1 : 1) - (1 : 0 : 0) ( − 2 : − 1 : 1 ) − ( 1 : 0 : 0 )
x + 2 z x + 2z x + 2 z
= = =
0 , 0, 0 ,
y y y
= = =
− z 3 -z^3 − z 3
0 0 0
2 2 2
D 0 − 2 ⋅ ( 1 : 0 : 0 ) D_0 - 2 \cdot(1 : 0 : 0) D 0 − 2 ⋅ ( 1 : 0 : 0 )
3 x 2 + x z − 7 z 2 3x^2 + xz - 7z^2 3 x 2 + x z − 7 z 2
= = =
0 , 0, 0 ,
y y y
= = =
x z 2 + z 3 xz^2 + z^3 x z 2 + z 3
0 0 0
4 4 4
Generator
D 0 D_0 D 0
Height
Order
( − 2 : 0 : 1 ) + ( 1 : 0 : 1 ) − 2 ⋅ ( 1 : 0 : 0 ) (-2 : 0 : 1) + (1 : 0 : 1) - 2 \cdot(1 : 0 : 0) ( − 2 : 0 : 1 ) + ( 1 : 0 : 1 ) − 2 ⋅ ( 1 : 0 : 0 )
( x − z ) ( x + 2 z ) (x - z) (x + 2z) ( x − z ) ( x + 2 z )
= = =
0 , 0, 0 ,
y y y
= = =
x 2 z + x z 2 − 2 z 3 x^2z + xz^2 - 2z^3 x 2 z + x z 2 − 2 z 3
0 0 0
2 2 2
( − 2 : 0 : 1 ) − ( 1 : 0 : 0 ) (-2 : 0 : 1) - (1 : 0 : 0) ( − 2 : 0 : 1 ) − ( 1 : 0 : 0 )
x + 2 z x + 2z x + 2 z
= = =
0 , 0, 0 ,
y y y
= = =
x 2 z + x z 2 − 2 z 3 x^2z + xz^2 - 2z^3 x 2 z + x z 2 − 2 z 3
0 0 0
2 2 2
D 0 − 2 ⋅ ( 1 : 0 : 0 ) D_0 - 2 \cdot(1 : 0 : 0) D 0 − 2 ⋅ ( 1 : 0 : 0 )
3 x 2 + x z − 7 z 2 3x^2 + xz - 7z^2 3 x 2 + x z − 7 z 2
= = =
0 , 0, 0 ,
y y y
= = =
x 2 z + 3 x z 2 + 2 z 3 x^2z + 3xz^2 + 2z^3 x 2 z + 3 x z 2 + 2 z 3
0 0 0
4 4 4
2-torsion field : Q ( 105 ) \Q(\sqrt{105}) Q ( 1 0 5 )
For primes ℓ ≥ 5 \ell \ge 5 ℓ ≥ 5 the Galois representation data has not been computed for this curve since it is not generic.
For primes ℓ ≤ 3 \ell \le 3 ℓ ≤ 3 , the image of the mod-ℓ \ell ℓ Galois representation is listed in the table below, whenever it is not all of GSp ( 4 , F ℓ ) \GSp(4,\F_\ell) GSp ( 4 , F ℓ ) .
Splits over Q \Q Q
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes: Elliptic curve isogeny class 15.a Elliptic curve isogeny class 42.a
magma: HeuristicDecompositionFactors(C);
Of GL 2 \GL_2 GL 2 -type over Q \Q Q
Endomorphism ring over Q \Q Q :
End ( J ) \End (J_{}) E n d ( J ) ≃ \simeq ≃ an order of index 2 2 2 in Z × Z \Z \times \Z Z × Z End ( J ) ⊗ Q \End (J_{}) \otimes \Q E n d ( J ) ⊗ Q ≃ \simeq ≃ Q \Q Q × \times × Q \Q Q End ( J ) ⊗ R \End (J_{}) \otimes \R E n d ( J ) ⊗ R ≃ \simeq ≃ R × R \R \times \R R × R
All Q ‾ \overline{\Q} Q -endomorphisms of the Jacobian are defined over Q \Q Q .
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);