Properties

Label 73728.d.884736.1
Conductor $73728$
Discriminant $884736$
Mordell-Weil group \(\Z/{2}\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Sato-Tate group $J(E_4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\mathrm{M}_2(\R)\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathrm{M}_2(\Q)\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 = 2x^5 - 5x^3 + 3x$ (homogenize, simplify)
$y^2 = 2x^5z - 5x^3z^3 + 3xz^5$ (dehomogenize, simplify)
$y^2 = 2x^5 - 5x^3 + 3x$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 3, 0, -5, 0, 2]), R([]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 3, 0, -5, 0, 2], R![]);
 
sage: X = HyperellipticCurve(R([0, 3, 0, -5, 0, 2]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(73728\) \(=\) \( 2^{13} \cdot 3^{2} \)
magma: Conductor(LSeries(C: ExcFactors:=[*<2,Valuation(73728,2),R![1]>*])); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(884736\) \(=\) \( 2^{15} \cdot 3^{3} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(195\) \(=\)  \( 3 \cdot 5 \cdot 13 \)
\( I_4 \)  \(=\) \(630\) \(=\)  \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
\( I_6 \)  \(=\) \(44910\) \(=\)  \( 2 \cdot 3^{2} \cdot 5 \cdot 499 \)
\( I_{10} \)  \(=\) \(108\) \(=\)  \( 2^{2} \cdot 3^{3} \)
\( J_2 \)  \(=\) \(780\) \(=\)  \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \)
\( J_4 \)  \(=\) \(18630\) \(=\)  \( 2 \cdot 3^{4} \cdot 5 \cdot 23 \)
\( J_6 \)  \(=\) \(-380\) \(=\)  \( - 2^{2} \cdot 5 \cdot 19 \)
\( J_8 \)  \(=\) \(-86843325\) \(=\)  \( - 3 \cdot 5^{2} \cdot 113 \cdot 10247 \)
\( J_{10} \)  \(=\) \(884736\) \(=\)  \( 2^{15} \cdot 3^{3} \)
\( g_1 \)  \(=\) \(10442615625/32\)
\( g_2 \)  \(=\) \(2558131875/256\)
\( g_3 \)  \(=\) \(-401375/1536\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $D_4$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : 0 : 1),\, (1 : 0 : 1)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : 0 : 1),\, (1 : 0 : 1)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : 0 : 1),\, (1 : 0 : 1)\)

magma: [C![-1,0,1],C![0,0,1],C![1,0,0],C![1,0,1]]; // minimal model
 
magma: [C![-1,0,1],C![0,0,1],C![1,0,0],C![1,0,1]]; // simplified model
 

Number of rational Weierstrass points: \(4\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : 0 : 1) + (1 : 0 : 1) - 2 \cdot(1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(2x^2 - 3z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
\((-1 : 0 : 1) + (0 : 0 : 1) - 2 \cdot(1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
Generator $D_0$ Height Order
\((0 : 0 : 1) + (1 : 0 : 1) - 2 \cdot(1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(2x^2 - 3z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
\((-1 : 0 : 1) + (0 : 0 : 1) - 2 \cdot(1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
Generator $D_0$ Height Order
\((0 : 0 : 1) + (1 : 0 : 1) - 2 \cdot(1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(2x^2 - 3z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
\((-1 : 0 : 1) + (0 : 0 : 1) - 2 \cdot(1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)

2-torsion field: \(\Q(\sqrt{6}) \)

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(3\)
Regulator: \( 1 \)
Real period: \( 11.16630 \)
Tamagawa product: \( 8 \)
Torsion order:\( 8 \)
Leading coefficient: \( 1.395788 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(13\) \(15\) \(4\) \(1\)
\(3\) \(2\) \(3\) \(2\) \(1 + 3 T^{2}\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.360.2 yes
\(3\) 3.270.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $J(E_4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over the number field \(\Q (b) \simeq \) 4.2.55296.4 with defining polynomial:
  \(x^{4} - 24\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  \(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
  \(g_4 = 160 b^{2} + 480\)
  \(g_6 = -1792 b^{3} - 11520 b\)
   Conductor norm: 32
  \(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
  \(g_4 = 160 b^{2} + 480\)
  \(g_6 = 1792 b^{3} + 11520 b\)
   Conductor norm: 32

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) 8.0.12230590464.5 with defining polynomial \(x^{8} + 4 x^{6} + 18 x^{4} - 68 x^{2} + 49\)

Not of \(\GL_2\)-type over \(\overline{\Q}\)

Endomorphism ring over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}})\)\(\simeq\)a non-Eichler order of index \(4\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\)
\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\mathrm{M}_2(\)\(\Q\)\()\)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\mathrm{M}_2 (\R)\)

Remainder of the endomorphism lattice by field

Over subfield \(F \simeq \) \(\Q(\sqrt{-1}) \) with generator \(\frac{5}{56} a^{7} + \frac{27}{56} a^{5} + \frac{125}{56} a^{3} - \frac{193}{56} a\) with minimal polynomial \(x^{2} + 1\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\sqrt{-1}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-1}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_4$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) \(\Q(\sqrt{-6}) \) with generator \(\frac{1}{4} a^{6} + \frac{5}{4} a^{4} + \frac{25}{4} a^{2} - \frac{39}{4}\) with minimal polynomial \(x^{2} + 6\):

\(\End (J_{F})\)\(\simeq\)\(\Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R\)
  Sato Tate group: $J(E_2)$
  Not of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) \(\Q(\sqrt{6}) \) with generator \(\frac{1}{28} a^{7} + \frac{1}{7} a^{5} + \frac{11}{28} a^{3} - \frac{41}{14} a\) with minimal polynomial \(x^{2} - 6\):

\(\End (J_{F})\)\(\simeq\)\(\Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R\)
  Sato Tate group: $J(E_2)$
  Not of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) \(\Q(i, \sqrt{6})\) with generator \(-\frac{1}{56} a^{7} + \frac{1}{8} a^{6} - \frac{1}{14} a^{5} + \frac{5}{8} a^{4} - \frac{11}{56} a^{3} + \frac{25}{8} a^{2} + \frac{41}{28} a - \frac{39}{8}\) with minimal polynomial \(x^{4} + 9\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\sqrt{-1}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-1}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_2$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 4.0.55296.1 with generator \(\frac{1}{8} a^{6} + \frac{5}{8} a^{4} + \frac{21}{8} a^{2} - \frac{43}{8}\) with minimal polynomial \(x^{4} + 6\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\sqrt{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{2}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R \times \R\)
  Sato Tate group: $J(E_1)$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 4.0.55296.1 with generator \(\frac{5}{56} a^{7} + \frac{27}{56} a^{5} + \frac{125}{56} a^{3} - \frac{137}{56} a\) with minimal polynomial \(x^{4} + 6\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\sqrt{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{2}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R \times \R\)
  Sato Tate group: $J(E_1)$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 4.2.55296.4 with generator \(-\frac{5}{56} a^{7} + \frac{1}{8} a^{6} - \frac{27}{56} a^{5} + \frac{5}{8} a^{4} - \frac{125}{56} a^{3} + \frac{21}{8} a^{2} + \frac{137}{56} a - \frac{43}{8}\) with minimal polynomial \(x^{4} - 24\):

\(\End (J_{F})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R \times \R\)
  Sato Tate group: $J(E_1)$
  Of \(\GL_2\)-type, not simple

Over subfield \(F \simeq \) 4.2.55296.4 with generator \(\frac{5}{56} a^{7} + \frac{1}{8} a^{6} + \frac{27}{56} a^{5} + \frac{5}{8} a^{4} + \frac{125}{56} a^{3} + \frac{21}{8} a^{2} - \frac{137}{56} a - \frac{43}{8}\) with minimal polynomial \(x^{4} - 24\):

\(\End (J_{F})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R \times \R\)
  Sato Tate group: $J(E_1)$
  Of \(\GL_2\)-type, not simple

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);