Properties

Label 73728.d.884736.1
Conductor 7372873728
Discriminant 884736884736
Mordell-Weil group Z/2ZZ/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z
Sato-Tate group J(E4)J(E_4)
End(JQ)R\End(J_{\overline{\Q}}) \otimes \R M2(R)\mathrm{M}_2(\R)
End(JQ)Q\End(J_{\overline{\Q}}) \otimes \Q M2(Q)\mathrm{M}_2(\Q)
End(J)Q\End(J) \otimes \Q Q\Q
Q\overline{\Q}-simple no
GL2\mathrm{GL}_2-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

y2=2x55x3+3xy^2 = 2x^5 - 5x^3 + 3x (homogenize, simplify)
y2=2x5z5x3z3+3xz5y^2 = 2x^5z - 5x^3z^3 + 3xz^5 (dehomogenize, simplify)
y2=2x55x3+3xy^2 = 2x^5 - 5x^3 + 3x (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 3, 0, -5, 0, 2]), R([]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 3, 0, -5, 0, 2], R![]);
 
sage: X = HyperellipticCurve(R([0, 3, 0, -5, 0, 2]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: N N  ==  7372873728 == 21332 2^{13} \cdot 3^{2}
magma: Conductor(LSeries(C: ExcFactors:=[*<2,Valuation(73728,2),R![1]>*])); Factorization($1);
 
Discriminant: Δ \Delta  ==  884736884736 == 21533 2^{15} \cdot 3^{3}
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

I2 I_2  == 195195 ==  3513 3 \cdot 5 \cdot 13
I4 I_4  == 630630 ==  23257 2 \cdot 3^{2} \cdot 5 \cdot 7
I6 I_6  == 4491044910 ==  2325499 2 \cdot 3^{2} \cdot 5 \cdot 499
I10 I_{10}  == 108108 ==  2233 2^{2} \cdot 3^{3}
J2 J_2  == 780780 ==  223513 2^{2} \cdot 3 \cdot 5 \cdot 13
J4 J_4  == 1863018630 ==  234523 2 \cdot 3^{4} \cdot 5 \cdot 23
J6 J_6  == 380-380 ==  22519 - 2^{2} \cdot 5 \cdot 19
J8 J_8  == 86843325-86843325 ==  35211310247 - 3 \cdot 5^{2} \cdot 113 \cdot 10247
J10 J_{10}  == 884736884736 ==  21533 2^{15} \cdot 3^{3}
g1 g_1  == 10442615625/3210442615625/32
g2 g_2  == 2558131875/2562558131875/256
g3 g_3  == 401375/1536-401375/1536

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

Aut(X)\mathrm{Aut}(X)\simeq C2C_2
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
Aut(XQ)\mathrm{Aut}(X_{\overline{\Q}})\simeq D4D_4
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: (1:0:0),(0:0:1),(1:0:1),(1:0:1)(1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : 0 : 1),\, (1 : 0 : 1)
All points: (1:0:0),(0:0:1),(1:0:1),(1:0:1)(1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : 0 : 1),\, (1 : 0 : 1)
All points: (1:0:0),(0:0:1),(1:0:1),(1:0:1)(1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : 0 : 1),\, (1 : 0 : 1)

magma: [C![-1,0,1],C![0,0,1],C![1,0,0],C![1,0,1]]; // minimal model
 
magma: [C![-1,0,1],C![0,0,1],C![1,0,0],C![1,0,1]]; // simplified model
 

Number of rational Weierstrass points: 44

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: Z/2ZZ/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator D0D_0 Height Order
(0:0:1)+(1:0:1)2(1:0:0)(0 : 0 : 1) + (1 : 0 : 1) - 2 \cdot(1 : 0 : 0) x(xz)x (x - z) == 0,0, yy == 00 00 22
D02(1:0:0)D_0 - 2 \cdot(1 : 0 : 0) 2x23z22x^2 - 3z^2 == 0,0, yy == 00 00 22
(1:0:1)+(0:0:1)2(1:0:0)(-1 : 0 : 1) + (0 : 0 : 1) - 2 \cdot(1 : 0 : 0) x(x+z)x (x + z) == 0,0, yy == 00 00 22
Generator D0D_0 Height Order
(0:0:1)+(1:0:1)2(1:0:0)(0 : 0 : 1) + (1 : 0 : 1) - 2 \cdot(1 : 0 : 0) x(xz)x (x - z) == 0,0, yy == 00 00 22
D02(1:0:0)D_0 - 2 \cdot(1 : 0 : 0) 2x23z22x^2 - 3z^2 == 0,0, yy == 00 00 22
(1:0:1)+(0:0:1)2(1:0:0)(-1 : 0 : 1) + (0 : 0 : 1) - 2 \cdot(1 : 0 : 0) x(x+z)x (x + z) == 0,0, yy == 00 00 22
Generator D0D_0 Height Order
(0:0:1)+(1:0:1)2(1:0:0)(0 : 0 : 1) + (1 : 0 : 1) - 2 \cdot(1 : 0 : 0) x(xz)x (x - z) == 0,0, yy == 00 00 22
D02(1:0:0)D_0 - 2 \cdot(1 : 0 : 0) 2x23z22x^2 - 3z^2 == 0,0, yy == 00 00 22
(1:0:1)+(0:0:1)2(1:0:0)(-1 : 0 : 1) + (0 : 0 : 1) - 2 \cdot(1 : 0 : 0) x(x+z)x (x + z) == 0,0, yy == 00 00 22

2-torsion field: Q(6)\Q(\sqrt{6})

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: 00
Mordell-Weil rank: 00
2-Selmer rank:33
Regulator: 1 1
Real period: 11.16630 11.16630
Tamagawa product: 8 8
Torsion order:8 8
Leading coefficient: 1.395788 1.395788
Analytic order of Ш: 1 1   (rounded)
Order of Ш:square

Local invariants

Prime ord(NN) ord(Δ\Delta) Tamagawa L-factor Cluster picture
22 1313 1515 44 11
33 22 33 22 1+3T21 + 3 T^{2}

Galois representations

For primes 5\ell \ge 5 the Galois representation data has not been computed for this curve since it is not generic.

For primes 3\ell \le 3, the image of the mod-\ell Galois representation is listed in the table below, whenever it is not all of GSp(4,F)\GSp(4,\F_\ell).

Prime \ell mod-\ell image Is torsion prime?
22 2.360.2 yes
33 3.270.1 no

Sato-Tate group

ST\mathrm{ST}\simeq J(E4)J(E_4)
ST0\mathrm{ST}^0\simeq SU(2)\mathrm{SU}(2)

Decomposition of the Jacobian

Splits over the number field Q(b)\Q (b) \simeq 4.2.55296.4 with defining polynomial:
  x424x^{4} - 24

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  y2=x3g4/48xg6/864y^2 = x^3 - g_4 / 48 x - g_6 / 864 with
  g4=160b2+480g_4 = 160 b^{2} + 480
  g6=1792b311520bg_6 = -1792 b^{3} - 11520 b
   Conductor norm: 32
  y2=x3g4/48xg6/864y^2 = x^3 - g_4 / 48 x - g_6 / 864 with
  g4=160b2+480g_4 = 160 b^{2} + 480
  g6=1792b3+11520bg_6 = 1792 b^{3} + 11520 b
   Conductor norm: 32

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of GL2\GL_2-type over Q\Q

Endomorphism ring over Q\Q:

End(J)\End (J_{})\simeqZ\Z
End(J)Q\End (J_{}) \otimes \Q \simeqQ\Q
End(J)R\End (J_{}) \otimes \R\simeq R\R

Smallest field over which all endomorphisms are defined:
Galois number field K=Q(a)K = \Q (a) \simeq 8.0.12230590464.5 with defining polynomial x8+4x6+18x468x2+49x^{8} + 4 x^{6} + 18 x^{4} - 68 x^{2} + 49

Not of GL2\GL_2-type over Q\overline{\Q}

Endomorphism ring over Q\overline{\Q}:

End(JQ)\End (J_{\overline{\Q}})\simeqa non-Eichler order of index 44 in a maximal order of End(JQ)Q\End (J_{\overline{\Q}}) \otimes \Q
End(JQ)Q\End (J_{\overline{\Q}}) \otimes \Q \simeqM2(\mathrm{M}_2(Q\Q))
End(JQ)R\End (J_{\overline{\Q}}) \otimes \R\simeq M2(R)\mathrm{M}_2 (\R)

Remainder of the endomorphism lattice by field

Over subfield FF \simeq Q(1)\Q(\sqrt{-1}) with generator 556a7+2756a5+12556a319356a\frac{5}{56} a^{7} + \frac{27}{56} a^{5} + \frac{125}{56} a^{3} - \frac{193}{56} a with minimal polynomial x2+1x^{2} + 1:

End(JF)\End (J_{F})\simeqZ[1]\Z [\sqrt{-1}]
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ(1)\Q(\sqrt{-1})
End(JF)R\End (J_{F}) \otimes \R\simeq C\C
  Sato Tate group: E4E_4
  Of GL2\GL_2-type, simple

Over subfield FF \simeq Q(6)\Q(\sqrt{-6}) with generator 14a6+54a4+254a2394\frac{1}{4} a^{6} + \frac{5}{4} a^{4} + \frac{25}{4} a^{2} - \frac{39}{4} with minimal polynomial x2+6x^{2} + 6:

End(JF)\End (J_{F})\simeqZ\Z
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ\Q
End(JF)R\End (J_{F}) \otimes \R\simeq R\R
  Sato Tate group: J(E2)J(E_2)
  Not of GL2\GL_2-type, simple

Over subfield FF \simeq Q(6)\Q(\sqrt{6}) with generator 128a7+17a5+1128a34114a\frac{1}{28} a^{7} + \frac{1}{7} a^{5} + \frac{11}{28} a^{3} - \frac{41}{14} a with minimal polynomial x26x^{2} - 6:

End(JF)\End (J_{F})\simeqZ\Z
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ\Q
End(JF)R\End (J_{F}) \otimes \R\simeq R\R
  Sato Tate group: J(E2)J(E_2)
  Not of GL2\GL_2-type, simple

Over subfield FF \simeq Q(i,6)\Q(i, \sqrt{6}) with generator 156a7+18a6114a5+58a41156a3+258a2+4128a398-\frac{1}{56} a^{7} + \frac{1}{8} a^{6} - \frac{1}{14} a^{5} + \frac{5}{8} a^{4} - \frac{11}{56} a^{3} + \frac{25}{8} a^{2} + \frac{41}{28} a - \frac{39}{8} with minimal polynomial x4+9x^{4} + 9:

End(JF)\End (J_{F})\simeqZ[1]\Z [\sqrt{-1}]
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ(1)\Q(\sqrt{-1})
End(JF)R\End (J_{F}) \otimes \R\simeq C\C
  Sato Tate group: E2E_2
  Of GL2\GL_2-type, simple

Over subfield FF \simeq 4.0.55296.1 with generator 18a6+58a4+218a2438\frac{1}{8} a^{6} + \frac{5}{8} a^{4} + \frac{21}{8} a^{2} - \frac{43}{8} with minimal polynomial x4+6x^{4} + 6:

End(JF)\End (J_{F})\simeqZ[2]\Z [\sqrt{2}]
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ(2)\Q(\sqrt{2})
End(JF)R\End (J_{F}) \otimes \R\simeq R×R\R \times \R
  Sato Tate group: J(E1)J(E_1)
  Of GL2\GL_2-type, simple

Over subfield FF \simeq 4.0.55296.1 with generator 556a7+2756a5+12556a313756a\frac{5}{56} a^{7} + \frac{27}{56} a^{5} + \frac{125}{56} a^{3} - \frac{137}{56} a with minimal polynomial x4+6x^{4} + 6:

End(JF)\End (J_{F})\simeqZ[2]\Z [\sqrt{2}]
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ(2)\Q(\sqrt{2})
End(JF)R\End (J_{F}) \otimes \R\simeq R×R\R \times \R
  Sato Tate group: J(E1)J(E_1)
  Of GL2\GL_2-type, simple

Over subfield FF \simeq 4.2.55296.4 with generator 556a7+18a62756a5+58a412556a3+218a2+13756a438-\frac{5}{56} a^{7} + \frac{1}{8} a^{6} - \frac{27}{56} a^{5} + \frac{5}{8} a^{4} - \frac{125}{56} a^{3} + \frac{21}{8} a^{2} + \frac{137}{56} a - \frac{43}{8} with minimal polynomial x424x^{4} - 24:

End(JF)\End (J_{F})\simeqan order of index 22 in Z×Z\Z \times \Z
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ\Q ×\times Q\Q
End(JF)R\End (J_{F}) \otimes \R\simeq R×R\R \times \R
  Sato Tate group: J(E1)J(E_1)
  Of GL2\GL_2-type, not simple

Over subfield FF \simeq 4.2.55296.4 with generator 556a7+18a6+2756a5+58a4+12556a3+218a213756a438\frac{5}{56} a^{7} + \frac{1}{8} a^{6} + \frac{27}{56} a^{5} + \frac{5}{8} a^{4} + \frac{125}{56} a^{3} + \frac{21}{8} a^{2} - \frac{137}{56} a - \frac{43}{8} with minimal polynomial x424x^{4} - 24:

End(JF)\End (J_{F})\simeqan order of index 22 in Z×Z\Z \times \Z
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ\Q ×\times Q\Q
End(JF)R\End (J_{F}) \otimes \R\simeq R×R\R \times \R
  Sato Tate group: J(E1)J(E_1)
  Of GL2\GL_2-type, not simple

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);