sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 3, 0, -5, 0, 2]), R([]));
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 3, 0, -5, 0, 2], R![]);
sage: X = HyperellipticCurve(R([0, 3, 0, -5, 0, 2]))
magma: X,pi:= SimplifiedModel(C);
Conductor : N N N = = = 73728 73728 7 3 7 2 8 = = = 2 13 ⋅ 3 2 2^{13} \cdot 3^{2} 2 1 3 ⋅ 3 2
magma: Conductor(LSeries(C: ExcFactors:=[*<2,Valuation(73728,2),R![1]>*])); Factorization($1);
Discriminant : Δ \Delta Δ = = = 884736 884736 8 8 4 7 3 6 = = = 2 15 ⋅ 3 3 2^{15} \cdot 3^{3} 2 1 5 ⋅ 3 3
magma: Discriminant(C); Factorization(Integers()!$1);
I 2 I_2 I 2 = = = 195 195 1 9 5 = = =
3 ⋅ 5 ⋅ 13 3 \cdot 5 \cdot 13 3 ⋅ 5 ⋅ 1 3
I 4 I_4 I 4 = = = 630 630 6 3 0 = = =
2 ⋅ 3 2 ⋅ 5 ⋅ 7 2 \cdot 3^{2} \cdot 5 \cdot 7 2 ⋅ 3 2 ⋅ 5 ⋅ 7
I 6 I_6 I 6 = = = 44910 44910 4 4 9 1 0 = = =
2 ⋅ 3 2 ⋅ 5 ⋅ 499 2 \cdot 3^{2} \cdot 5 \cdot 499 2 ⋅ 3 2 ⋅ 5 ⋅ 4 9 9
I 10 I_{10} I 1 0 = = = 108 108 1 0 8 = = =
2 2 ⋅ 3 3 2^{2} \cdot 3^{3} 2 2 ⋅ 3 3
J 2 J_2 J 2 = = = 780 780 7 8 0 = = =
2 2 ⋅ 3 ⋅ 5 ⋅ 13 2^{2} \cdot 3 \cdot 5 \cdot 13 2 2 ⋅ 3 ⋅ 5 ⋅ 1 3
J 4 J_4 J 4 = = = 18630 18630 1 8 6 3 0 = = =
2 ⋅ 3 4 ⋅ 5 ⋅ 23 2 \cdot 3^{4} \cdot 5 \cdot 23 2 ⋅ 3 4 ⋅ 5 ⋅ 2 3
J 6 J_6 J 6 = = = − 380 -380 − 3 8 0 = = =
− 2 2 ⋅ 5 ⋅ 19 - 2^{2} \cdot 5 \cdot 19 − 2 2 ⋅ 5 ⋅ 1 9
J 8 J_8 J 8 = = = − 86843325 -86843325 − 8 6 8 4 3 3 2 5 = = =
− 3 ⋅ 5 2 ⋅ 113 ⋅ 10247 - 3 \cdot 5^{2} \cdot 113 \cdot 10247 − 3 ⋅ 5 2 ⋅ 1 1 3 ⋅ 1 0 2 4 7
J 10 J_{10} J 1 0 = = = 884736 884736 8 8 4 7 3 6 = = =
2 15 ⋅ 3 3 2^{15} \cdot 3^{3} 2 1 5 ⋅ 3 3
g 1 g_1 g 1 = = = 10442615625 / 32 10442615625/32 1 0 4 4 2 6 1 5 6 2 5 / 3 2
g 2 g_2 g 2 = = = 2558131875 / 256 2558131875/256 2 5 5 8 1 3 1 8 7 5 / 2 5 6
g 3 g_3 g 3 = = = − 401375 / 1536 -401375/1536 − 4 0 1 3 7 5 / 1 5 3 6
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
A u t ( X ) \mathrm{Aut}(X) A u t ( X ) ≃ \simeq ≃
C 2 C_2 C 2
magma: AutomorphismGroup(C); IdentifyGroup($1);
A u t ( X Q ‾ ) \mathrm{Aut}(X_{\overline{\Q}}) A u t ( X Q ) ≃ \simeq ≃
D 4 D_4 D 4
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
All points :
( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( − 1 : 0 : 1 ) , ( 1 : 0 : 1 ) (1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : 0 : 1),\, (1 : 0 : 1) ( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( − 1 : 0 : 1 ) , ( 1 : 0 : 1 )
All points :
( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( − 1 : 0 : 1 ) , ( 1 : 0 : 1 ) (1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : 0 : 1),\, (1 : 0 : 1) ( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( − 1 : 0 : 1 ) , ( 1 : 0 : 1 )
All points :
( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( − 1 : 0 : 1 ) , ( 1 : 0 : 1 ) (1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : 0 : 1),\, (1 : 0 : 1) ( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( − 1 : 0 : 1 ) , ( 1 : 0 : 1 )
magma: [C![-1,0,1],C![0,0,1],C![1,0,0],C![1,0,1]]; // minimal model
magma: [C![-1,0,1],C![0,0,1],C![1,0,0],C![1,0,1]]; // simplified model
Number of rational Weierstrass points : 4 4 4
magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
This curve is locally solvable everywhere.
magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
Group structure : Z / 2 Z ⊕ Z / 2 Z ⊕ Z / 2 Z \Z/{2}\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z Z / 2 Z ⊕ Z / 2 Z ⊕ Z / 2 Z
magma: MordellWeilGroupGenus2(Jacobian(C));
Generator
D 0 D_0 D 0
Height
Order
( 0 : 0 : 1 ) + ( 1 : 0 : 1 ) − 2 ⋅ ( 1 : 0 : 0 ) (0 : 0 : 1) + (1 : 0 : 1) - 2 \cdot(1 : 0 : 0) ( 0 : 0 : 1 ) + ( 1 : 0 : 1 ) − 2 ⋅ ( 1 : 0 : 0 )
x ( x − z ) x (x - z) x ( x − z )
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
D 0 − 2 ⋅ ( 1 : 0 : 0 ) D_0 - 2 \cdot(1 : 0 : 0) D 0 − 2 ⋅ ( 1 : 0 : 0 )
2 x 2 − 3 z 2 2x^2 - 3z^2 2 x 2 − 3 z 2
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
( − 1 : 0 : 1 ) + ( 0 : 0 : 1 ) − 2 ⋅ ( 1 : 0 : 0 ) (-1 : 0 : 1) + (0 : 0 : 1) - 2 \cdot(1 : 0 : 0) ( − 1 : 0 : 1 ) + ( 0 : 0 : 1 ) − 2 ⋅ ( 1 : 0 : 0 )
x ( x + z ) x (x + z) x ( x + z )
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
Generator
D 0 D_0 D 0
Height
Order
( 0 : 0 : 1 ) + ( 1 : 0 : 1 ) − 2 ⋅ ( 1 : 0 : 0 ) (0 : 0 : 1) + (1 : 0 : 1) - 2 \cdot(1 : 0 : 0) ( 0 : 0 : 1 ) + ( 1 : 0 : 1 ) − 2 ⋅ ( 1 : 0 : 0 )
x ( x − z ) x (x - z) x ( x − z )
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
D 0 − 2 ⋅ ( 1 : 0 : 0 ) D_0 - 2 \cdot(1 : 0 : 0) D 0 − 2 ⋅ ( 1 : 0 : 0 )
2 x 2 − 3 z 2 2x^2 - 3z^2 2 x 2 − 3 z 2
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
( − 1 : 0 : 1 ) + ( 0 : 0 : 1 ) − 2 ⋅ ( 1 : 0 : 0 ) (-1 : 0 : 1) + (0 : 0 : 1) - 2 \cdot(1 : 0 : 0) ( − 1 : 0 : 1 ) + ( 0 : 0 : 1 ) − 2 ⋅ ( 1 : 0 : 0 )
x ( x + z ) x (x + z) x ( x + z )
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
Generator
D 0 D_0 D 0
Height
Order
( 0 : 0 : 1 ) + ( 1 : 0 : 1 ) − 2 ⋅ ( 1 : 0 : 0 ) (0 : 0 : 1) + (1 : 0 : 1) - 2 \cdot(1 : 0 : 0) ( 0 : 0 : 1 ) + ( 1 : 0 : 1 ) − 2 ⋅ ( 1 : 0 : 0 )
x ( x − z ) x (x - z) x ( x − z )
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
D 0 − 2 ⋅ ( 1 : 0 : 0 ) D_0 - 2 \cdot(1 : 0 : 0) D 0 − 2 ⋅ ( 1 : 0 : 0 )
2 x 2 − 3 z 2 2x^2 - 3z^2 2 x 2 − 3 z 2
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
( − 1 : 0 : 1 ) + ( 0 : 0 : 1 ) − 2 ⋅ ( 1 : 0 : 0 ) (-1 : 0 : 1) + (0 : 0 : 1) - 2 \cdot(1 : 0 : 0) ( − 1 : 0 : 1 ) + ( 0 : 0 : 1 ) − 2 ⋅ ( 1 : 0 : 0 )
x ( x + z ) x (x + z) x ( x + z )
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
2-torsion field : Q ( 6 ) \Q(\sqrt{6}) Q ( 6 )
For primes ℓ ≥ 5 \ell \ge 5 ℓ ≥ 5 the Galois representation data has not been computed for this curve since it is not generic.
For primes ℓ ≤ 3 \ell \le 3 ℓ ≤ 3 , the image of the mod-ℓ \ell ℓ Galois representation is listed in the table below, whenever it is not all of GSp ( 4 , F ℓ ) \GSp(4,\F_\ell) GSp ( 4 , F ℓ ) .
S T \mathrm{ST} S T ≃ \simeq ≃ J ( E 4 ) J(E_4) J ( E 4 )
S T 0 \mathrm{ST}^0 S T 0 ≃ \simeq ≃ S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Splits over the number field Q ( b ) ≃ \Q (b) \simeq Q ( b ) ≃ 4.2.55296.4 with defining polynomial: x 4 − 24 x^{4} - 24 x 4 − 2 4
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes: y 2 = x 3 − g 4 / 48 x − g 6 / 864 y^2 = x^3 - g_4 / 48 x - g_6 / 864 y 2 = x 3 − g 4 / 4 8 x − g 6 / 8 6 4 with g 4 = 160 b 2 + 480 g_4 = 160 b^{2} + 480 g 4 = 1 6 0 b 2 + 4 8 0 g 6 = − 1792 b 3 − 11520 b g_6 = -1792 b^{3} - 11520 b g 6 = − 1 7 9 2 b 3 − 1 1 5 2 0 b Conductor norm: 32 y 2 = x 3 − g 4 / 48 x − g 6 / 864 y^2 = x^3 - g_4 / 48 x - g_6 / 864 y 2 = x 3 − g 4 / 4 8 x − g 6 / 8 6 4 with g 4 = 160 b 2 + 480 g_4 = 160 b^{2} + 480 g 4 = 1 6 0 b 2 + 4 8 0 g 6 = 1792 b 3 + 11520 b g_6 = 1792 b^{3} + 11520 b g 6 = 1 7 9 2 b 3 + 1 1 5 2 0 b Conductor norm: 32
magma: HeuristicDecompositionFactors(C);
Not of GL 2 \GL_2 GL 2 -type over Q \Q Q
Endomorphism ring over Q \Q Q :
End ( J ) \End (J_{}) E n d ( J ) ≃ \simeq ≃ Z \Z Z End ( J ) ⊗ Q \End (J_{}) \otimes \Q E n d ( J ) ⊗ Q ≃ \simeq ≃ Q \Q Q End ( J ) ⊗ R \End (J_{}) \otimes \R E n d ( J ) ⊗ R ≃ \simeq ≃ R \R R
Smallest field over which all endomorphisms are defined:
Galois number field K = Q ( a ) ≃ K = \Q (a) \simeq K = Q ( a ) ≃ 8.0.12230590464.5 with defining polynomial x 8 + 4 x 6 + 18 x 4 − 68 x 2 + 49 x^{8} + 4 x^{6} + 18 x^{4} - 68 x^{2} + 49 x 8 + 4 x 6 + 1 8 x 4 − 6 8 x 2 + 4 9
Not of GL 2 \GL_2 GL 2 -type over Q ‾ \overline{\Q} Q
Endomorphism ring over Q ‾ \overline{\Q} Q :
End ( J Q ‾ ) \End (J_{\overline{\Q}}) E n d ( J Q ) ≃ \simeq ≃ a non-Eichler order of index 4 4 4 in a maximal order of End ( J Q ‾ ) ⊗ Q \End (J_{\overline{\Q}}) \otimes \Q E n d ( J Q ) ⊗ Q End ( J Q ‾ ) ⊗ Q \End (J_{\overline{\Q}}) \otimes \Q E n d ( J Q ) ⊗ Q ≃ \simeq ≃ M 2 ( \mathrm{M}_2( M 2 ( Q \Q Q ) ) ) End ( J Q ‾ ) ⊗ R \End (J_{\overline{\Q}}) \otimes \R E n d ( J Q ) ⊗ R ≃ \simeq ≃ M 2 ( R ) \mathrm{M}_2 (\R) M 2 ( R )
Over subfield F ≃ F \simeq F ≃ Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 ) with generator 5 56 a 7 + 27 56 a 5 + 125 56 a 3 − 193 56 a \frac{5}{56} a^{7} + \frac{27}{56} a^{5} + \frac{125}{56} a^{3} - \frac{193}{56} a 5 6 5 a 7 + 5 6 2 7 a 5 + 5 6 1 2 5 a 3 − 5 6 1 9 3 a with minimal polynomial x 2 + 1 x^{2} + 1 x 2 + 1 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ Z [ − 1 ] \Z [\sqrt{-1}] Z [ − 1 ] End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 ) End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ C \C C
Sato Tate group:
E 4 E_4 E 4 Of
GL 2 \GL_2 GL 2 -type, simple
Over subfield F ≃ F \simeq F ≃ Q ( − 6 ) \Q(\sqrt{-6}) Q ( − 6 ) with generator 1 4 a 6 + 5 4 a 4 + 25 4 a 2 − 39 4 \frac{1}{4} a^{6} + \frac{5}{4} a^{4} + \frac{25}{4} a^{2} - \frac{39}{4} 4 1 a 6 + 4 5 a 4 + 4 2 5 a 2 − 4 3 9 with minimal polynomial x 2 + 6 x^{2} + 6 x 2 + 6 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ Z \Z Z End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q \Q Q End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ R \R R
Sato Tate group:
J ( E 2 ) J(E_2) J ( E 2 ) Not of
GL 2 \GL_2 GL 2 -type, simple
Over subfield F ≃ F \simeq F ≃ Q ( 6 ) \Q(\sqrt{6}) Q ( 6 ) with generator 1 28 a 7 + 1 7 a 5 + 11 28 a 3 − 41 14 a \frac{1}{28} a^{7} + \frac{1}{7} a^{5} + \frac{11}{28} a^{3} - \frac{41}{14} a 2 8 1 a 7 + 7 1 a 5 + 2 8 1 1 a 3 − 1 4 4 1 a with minimal polynomial x 2 − 6 x^{2} - 6 x 2 − 6 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ Z \Z Z End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q \Q Q End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ R \R R
Sato Tate group:
J ( E 2 ) J(E_2) J ( E 2 ) Not of
GL 2 \GL_2 GL 2 -type, simple
Over subfield F ≃ F \simeq F ≃ Q ( i , 6 ) \Q(i, \sqrt{6}) Q ( i , 6 ) with generator − 1 56 a 7 + 1 8 a 6 − 1 14 a 5 + 5 8 a 4 − 11 56 a 3 + 25 8 a 2 + 41 28 a − 39 8 -\frac{1}{56} a^{7} + \frac{1}{8} a^{6} - \frac{1}{14} a^{5} + \frac{5}{8} a^{4} - \frac{11}{56} a^{3} + \frac{25}{8} a^{2} + \frac{41}{28} a - \frac{39}{8} − 5 6 1 a 7 + 8 1 a 6 − 1 4 1 a 5 + 8 5 a 4 − 5 6 1 1 a 3 + 8 2 5 a 2 + 2 8 4 1 a − 8 3 9 with minimal polynomial x 4 + 9 x^{4} + 9 x 4 + 9 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ Z [ − 1 ] \Z [\sqrt{-1}] Z [ − 1 ] End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 ) End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ C \C C
Sato Tate group:
E 2 E_2 E 2 Of
GL 2 \GL_2 GL 2 -type, simple
Over subfield F ≃ F \simeq F ≃ 4.0.55296.1 with generator 1 8 a 6 + 5 8 a 4 + 21 8 a 2 − 43 8 \frac{1}{8} a^{6} + \frac{5}{8} a^{4} + \frac{21}{8} a^{2} - \frac{43}{8} 8 1 a 6 + 8 5 a 4 + 8 2 1 a 2 − 8 4 3 with minimal polynomial x 4 + 6 x^{4} + 6 x 4 + 6 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ Z [ 2 ] \Z [\sqrt{2}] Z [ 2 ] End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q ( 2 ) \Q(\sqrt{2}) Q ( 2 ) End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ R × R \R \times \R R × R
Sato Tate group:
J ( E 1 ) J(E_1) J ( E 1 ) Of
GL 2 \GL_2 GL 2 -type, simple
Over subfield F ≃ F \simeq F ≃ 4.0.55296.1 with generator 5 56 a 7 + 27 56 a 5 + 125 56 a 3 − 137 56 a \frac{5}{56} a^{7} + \frac{27}{56} a^{5} + \frac{125}{56} a^{3} - \frac{137}{56} a 5 6 5 a 7 + 5 6 2 7 a 5 + 5 6 1 2 5 a 3 − 5 6 1 3 7 a with minimal polynomial x 4 + 6 x^{4} + 6 x 4 + 6 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ Z [ 2 ] \Z [\sqrt{2}] Z [ 2 ] End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q ( 2 ) \Q(\sqrt{2}) Q ( 2 ) End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ R × R \R \times \R R × R
Sato Tate group:
J ( E 1 ) J(E_1) J ( E 1 ) Of
GL 2 \GL_2 GL 2 -type, simple
Over subfield F ≃ F \simeq F ≃ 4.2.55296.4 with generator − 5 56 a 7 + 1 8 a 6 − 27 56 a 5 + 5 8 a 4 − 125 56 a 3 + 21 8 a 2 + 137 56 a − 43 8 -\frac{5}{56} a^{7} + \frac{1}{8} a^{6} - \frac{27}{56} a^{5} + \frac{5}{8} a^{4} - \frac{125}{56} a^{3} + \frac{21}{8} a^{2} + \frac{137}{56} a - \frac{43}{8} − 5 6 5 a 7 + 8 1 a 6 − 5 6 2 7 a 5 + 8 5 a 4 − 5 6 1 2 5 a 3 + 8 2 1 a 2 + 5 6 1 3 7 a − 8 4 3 with minimal polynomial x 4 − 24 x^{4} - 24 x 4 − 2 4 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ an order of index 2 2 2 in Z × Z \Z \times \Z Z × Z End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q \Q Q × \times × Q \Q Q End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ R × R \R \times \R R × R
Sato Tate group:
J ( E 1 ) J(E_1) J ( E 1 ) Of
GL 2 \GL_2 GL 2 -type, not simple
Over subfield F ≃ F \simeq F ≃ 4.2.55296.4 with generator 5 56 a 7 + 1 8 a 6 + 27 56 a 5 + 5 8 a 4 + 125 56 a 3 + 21 8 a 2 − 137 56 a − 43 8 \frac{5}{56} a^{7} + \frac{1}{8} a^{6} + \frac{27}{56} a^{5} + \frac{5}{8} a^{4} + \frac{125}{56} a^{3} + \frac{21}{8} a^{2} - \frac{137}{56} a - \frac{43}{8} 5 6 5 a 7 + 8 1 a 6 + 5 6 2 7 a 5 + 8 5 a 4 + 5 6 1 2 5 a 3 + 8 2 1 a 2 − 5 6 1 3 7 a − 8 4 3 with minimal polynomial x 4 − 24 x^{4} - 24 x 4 − 2 4 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ an order of index 2 2 2 in Z × Z \Z \times \Z Z × Z End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q \Q Q × \times × Q \Q Q End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ R × R \R \times \R R × R
Sato Tate group:
J ( E 1 ) J(E_1) J ( E 1 ) Of
GL 2 \GL_2 GL 2 -type, not simple
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);