Minimal equation
Minimal equation
Simplified equation
$y^2 + y = -6x^6 - 10x^4 - 5x^2 - 1$ | (homogenize, simplify) |
$y^2 + z^3y = -6x^6 - 10x^4z^2 - 5x^2z^4 - z^6$ | (dehomogenize, simplify) |
$y^2 = -24x^6 - 40x^4 - 20x^2 - 3$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(778752\) | \(=\) | \( 2^{9} \cdot 3^{2} \cdot 13^{2} \) | magma: Conductor(LSeries(C)); Factorization($1);
|
Discriminant: | \( \Delta \) | \(=\) | \(-778752\) | \(=\) | \( - 2^{9} \cdot 3^{2} \cdot 13^{2} \) | magma: Discriminant(C); Factorization(Integers()!$1);
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(1880\) | \(=\) | \( 2^{3} \cdot 5 \cdot 47 \) |
\( I_4 \) | \(=\) | \(1405\) | \(=\) | \( 5 \cdot 281 \) |
\( I_6 \) | \(=\) | \(879765\) | \(=\) | \( 3 \cdot 5 \cdot 89 \cdot 659 \) |
\( I_{10} \) | \(=\) | \(3042\) | \(=\) | \( 2 \cdot 3^{2} \cdot 13^{2} \) |
\( J_2 \) | \(=\) | \(3760\) | \(=\) | \( 2^{4} \cdot 5 \cdot 47 \) |
\( J_4 \) | \(=\) | \(585320\) | \(=\) | \( 2^{3} \cdot 5 \cdot 14633 \) |
\( J_6 \) | \(=\) | \(120706560\) | \(=\) | \( 2^{9} \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 31 \) |
\( J_8 \) | \(=\) | \(27814290800\) | \(=\) | \( 2^{4} \cdot 5^{2} \cdot 69535727 \) |
\( J_{10} \) | \(=\) | \(778752\) | \(=\) | \( 2^{9} \cdot 3^{2} \cdot 13^{2} \) |
\( g_1 \) | \(=\) | \(1467808044800000/1521\) | ||
\( g_2 \) | \(=\) | \(60769678360000/1521\) | ||
\( g_3 \) | \(=\) | \(2191328000\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2^2$ | magma: AutomorphismGroup(C); IdentifyGroup($1);
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $D_4$ | magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
Rational points
Number of rational Weierstrass points: \(0\)
This curve is locally solvable except over $\R$.
Mordell-Weil group of the Jacobian
Group structure: \(\Z \oplus \Z \oplus \Z/{2}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - D_\infty\) | \(5x^2 + 3z^2\) | \(=\) | \(0,\) | \(10y\) | \(=\) | \(3xz^2 - 5z^3\) | \(2.675228\) | \(\infty\) |
\(D_0 - D_\infty\) | \(x^2 + z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0.762168\) | \(\infty\) |
\(D_0 - D_\infty\) | \(2x^2 + z^2\) | \(=\) | \(0,\) | \(2y\) | \(=\) | \(-z^3\) | \(0\) | \(2\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - D_\infty\) | \(5x^2 + 3z^2\) | \(=\) | \(0,\) | \(10y\) | \(=\) | \(3xz^2 - 5z^3\) | \(2.675228\) | \(\infty\) |
\(D_0 - D_\infty\) | \(x^2 + z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0.762168\) | \(\infty\) |
\(D_0 - D_\infty\) | \(2x^2 + z^2\) | \(=\) | \(0,\) | \(2y\) | \(=\) | \(-z^3\) | \(0\) | \(2\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - D_\infty\) | \(5x^2 + 3z^2\) | \(=\) | \(0,\) | \(10y\) | \(=\) | \(6xz^2 - 9z^3\) | \(2.675228\) | \(\infty\) |
\(D_0 - D_\infty\) | \(x^2 + z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(z^3\) | \(0.762168\) | \(\infty\) |
\(D_0 - D_\infty\) | \(2x^2 + z^2\) | \(=\) | \(0,\) | \(2y\) | \(=\) | \(-z^3\) | \(0\) | \(2\) |
2-torsion field: 8.0.151613669376.4
BSD invariants
Hasse-Weil conjecture: | verified |
Analytic rank: | \(2\) |
Mordell-Weil rank: | \(2\) |
2-Selmer rank: | \(4\) |
Regulator: | \( 2.038973 \) |
Real period: | \( 4.813692 \) |
Tamagawa product: | \( 1 \) |
Torsion order: | \( 2 \) |
Leading coefficient: | \( 4.907496 \) |
Analytic order of Ш: | \( 2 \) (rounded) |
Order of Ш: | twice a square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | L-factor | Cluster picture |
---|---|---|---|---|---|
\(2\) | \(9\) | \(9\) | \(1\) | \(1\) | |
\(3\) | \(2\) | \(2\) | \(1\) | \(( 1 - T )( 1 + T )\) | |
\(13\) | \(2\) | \(2\) | \(1\) | \(( 1 - T )( 1 + T )\) |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.90.5 | yes |
\(3\) | 3.1080.10 | no |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $J(E_1)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Splits over \(\Q\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
Elliptic curve isogeny class 2496.u
Elliptic curve isogeny class 312.b
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) \(\Q(\sqrt{2}) \) with defining polynomial \(x^{2} - 2\)
Not of \(\GL_2\)-type over \(\overline{\Q}\)
Endomorphism ring over \(\overline{\Q}\):
\(\End (J_{\overline{\Q}})\) | \(\simeq\) | a non-Eichler order of index \(4\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\) |
\(\End (J_{\overline{\Q}}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
\(\End (J_{\overline{\Q}}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |