Properties

Label 778752.c.778752.1
Conductor 778752778752
Discriminant 778752-778752
Mordell-Weil group ZZZ/2Z\Z \oplus \Z \oplus \Z/{2}\Z
Sato-Tate group J(E1)J(E_1)
End(JQ)R\End(J_{\overline{\Q}}) \otimes \R M2(R)\mathrm{M}_2(\R)
End(JQ)Q\End(J_{\overline{\Q}}) \otimes \Q M2(Q)\mathrm{M}_2(\Q)
End(J)Q\End(J) \otimes \Q Q×Q\Q \times \Q
Q\overline{\Q}-simple no
GL2\mathrm{GL}_2-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

y2+y=6x610x45x21y^2 + y = -6x^6 - 10x^4 - 5x^2 - 1 (homogenize, simplify)
y2+z3y=6x610x4z25x2z4z6y^2 + z^3y = -6x^6 - 10x^4z^2 - 5x^2z^4 - z^6 (dehomogenize, simplify)
y2=24x640x420x23y^2 = -24x^6 - 40x^4 - 20x^2 - 3 (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-1, 0, -5, 0, -10, 0, -6]), R([1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-1, 0, -5, 0, -10, 0, -6], R![1]);
 
sage: X = HyperellipticCurve(R([-3, 0, -20, 0, -40, 0, -24]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: N N  ==  778752778752 == 2932132 2^{9} \cdot 3^{2} \cdot 13^{2}
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: Δ \Delta  ==  778752-778752 == 2932132 - 2^{9} \cdot 3^{2} \cdot 13^{2}
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

I2 I_2  == 18801880 ==  23547 2^{3} \cdot 5 \cdot 47
I4 I_4  == 14051405 ==  5281 5 \cdot 281
I6 I_6  == 879765879765 ==  3589659 3 \cdot 5 \cdot 89 \cdot 659
I10 I_{10}  == 30423042 ==  232132 2 \cdot 3^{2} \cdot 13^{2}
J2 J_2  == 37603760 ==  24547 2^{4} \cdot 5 \cdot 47
J4 J_4  == 585320585320 ==  23514633 2^{3} \cdot 5 \cdot 14633
J6 J_6  == 120706560120706560 ==  2932513231 2^{9} \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 31
J8 J_8  == 2781429080027814290800 ==  245269535727 2^{4} \cdot 5^{2} \cdot 69535727
J10 J_{10}  == 778752778752 ==  2932132 2^{9} \cdot 3^{2} \cdot 13^{2}
g1 g_1  == 1467808044800000/15211467808044800000/1521
g2 g_2  == 60769678360000/152160769678360000/1521
g3 g_3  == 21913280002191328000

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

Aut(X)\mathrm{Aut}(X)\simeq C22C_2^2
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
Aut(XQ)\mathrm{Aut}(X_{\overline{\Q}})\simeq D4D_4
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

This curve has no rational points.
This curve has no rational points.
This curve has no rational points.

magma: []; // minimal model
 
magma: []; // simplified model
 

Number of rational Weierstrass points: 00

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable except over R\R.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: ZZZ/2Z\Z \oplus \Z \oplus \Z/{2}\Z

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator D0D_0 Height Order
D0DD_0 - D_\infty 5x2+3z25x^2 + 3z^2 == 0,0, 10y10y == 3xz25z33xz^2 - 5z^3 2.6752282.675228 \infty
D0DD_0 - D_\infty x2+z2x^2 + z^2 == 0,0, yy == 00 0.7621680.762168 \infty
D0DD_0 - D_\infty 2x2+z22x^2 + z^2 == 0,0, 2y2y == z3-z^3 00 22
Generator D0D_0 Height Order
D0DD_0 - D_\infty 5x2+3z25x^2 + 3z^2 == 0,0, 10y10y == 3xz25z33xz^2 - 5z^3 2.6752282.675228 \infty
D0DD_0 - D_\infty x2+z2x^2 + z^2 == 0,0, yy == 00 0.7621680.762168 \infty
D0DD_0 - D_\infty 2x2+z22x^2 + z^2 == 0,0, 2y2y == z3-z^3 00 22
Generator D0D_0 Height Order
D0DD_0 - D_\infty 5x2+3z25x^2 + 3z^2 == 0,0, 10y10y == 6xz29z36xz^2 - 9z^3 2.6752282.675228 \infty
D0DD_0 - D_\infty x2+z2x^2 + z^2 == 0,0, yy == z3z^3 0.7621680.762168 \infty
D0DD_0 - D_\infty 2x2+z22x^2 + z^2 == 0,0, 2y2y == z3-z^3 00 22

2-torsion field: 8.0.151613669376.4

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: 22
Mordell-Weil rank: 22
2-Selmer rank:44
Regulator: 2.038973 2.038973
Real period: 4.813692 4.813692
Tamagawa product: 1 1
Torsion order:2 2
Leading coefficient: 4.907496 4.907496
Analytic order of Ш: 2 2   (rounded)
Order of Ш:twice a square

Local invariants

Prime ord(NN) ord(Δ\Delta) Tamagawa L-factor Cluster picture
22 99 99 11 11
33 22 22 11 (1T)(1+T)( 1 - T )( 1 + T )
1313 22 22 11 (1T)(1+T)( 1 - T )( 1 + T )

Galois representations

For primes 5\ell \ge 5 the Galois representation data has not been computed for this curve since it is not generic.

For primes 3\ell \le 3, the image of the mod-\ell Galois representation is listed in the table below, whenever it is not all of GSp(4,F)\GSp(4,\F_\ell).

Prime \ell mod-\ell image Is torsion prime?
22 2.90.5 yes
33 3.1080.10 no

Sato-Tate group

ST\mathrm{ST}\simeq J(E1)J(E_1)
ST0\mathrm{ST}^0\simeq SU(2)\mathrm{SU}(2)

Decomposition of the Jacobian

Splits over Q\Q

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 2496.u
  Elliptic curve isogeny class 312.b

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of GL2\GL_2-type over Q\Q

Endomorphism ring over Q\Q:

End(J)\End (J_{})\simeqan order of index 22 in Z×Z\Z \times \Z
End(J)Q\End (J_{}) \otimes \Q \simeqQ\Q ×\times Q\Q
End(J)R\End (J_{}) \otimes \R\simeq R×R\R \times \R

Smallest field over which all endomorphisms are defined:
Galois number field K=Q(a)K = \Q (a) \simeq Q(2)\Q(\sqrt{2}) with defining polynomial x22x^{2} - 2

Not of GL2\GL_2-type over Q\overline{\Q}

Endomorphism ring over Q\overline{\Q}:

End(JQ)\End (J_{\overline{\Q}})\simeqa non-Eichler order of index 44 in a maximal order of End(JQ)Q\End (J_{\overline{\Q}}) \otimes \Q
End(JQ)Q\End (J_{\overline{\Q}}) \otimes \Q \simeqM2(\mathrm{M}_2(Q\Q))
End(JQ)R\End (J_{\overline{\Q}}) \otimes \R\simeq M2(R)\mathrm{M}_2 (\R)

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);