Minimal equation
Minimal equation
Simplified equation
(homogenize, simplify) | |
(dehomogenize, simplify) | |
(homogenize, minimize) | |
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-1, 0, -5, 0, -10, 0, -6]), R([1]));
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-1, 0, -5, 0, -10, 0, -6], R![1]);
sage: X = HyperellipticCurve(R([-3, 0, -20, 0, -40, 0, -24]))
magma: X,pi:= SimplifiedModel(C);
Invariants
Conductor: | magma: Conductor(LSeries(C)); Factorization($1);
|
|||||
Discriminant: | magma: Discriminant(C); Factorization(Integers()!$1);
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
Automorphism group
magma: AutomorphismGroup(C); IdentifyGroup($1);
|
|||
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
Rational points
This curve has no rational points.
This curve has no rational points.
This curve has no rational points.
magma: []; // minimal model
magma: []; // simplified model
Number of rational Weierstrass points:
magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
This curve is locally solvable except over .
magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
Mordell-Weil group of the Jacobian
magma: MordellWeilGroupGenus2(Jacobian(C));
2-torsion field: 8.0.151613669376.4
BSD invariants
Hasse-Weil conjecture: | verified |
Analytic rank: | |
Mordell-Weil rank: | |
2-Selmer rank: | |
Regulator: | |
Real period: | |
Tamagawa product: | |
Torsion order: | |
Leading coefficient: | |
Analytic order of Ш: | (rounded) |
Order of Ш: | twice a square |
Local invariants
Prime | ord() | ord() | Tamagawa | L-factor | Cluster picture |
---|---|---|---|---|---|
Galois representations
For primes the Galois representation data has not been computed for this curve since it is not generic.
For primes , the image of the mod- Galois representation is listed in the table below, whenever it is not all of .
Prime | mod- image | Is torsion prime? |
---|---|---|
2.90.5 | yes | |
3.1080.10 | no |
Sato-Tate group
Decomposition of the Jacobian
Splits over
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
Elliptic curve isogeny class 2496.u
Elliptic curve isogeny class 312.b
magma: HeuristicDecompositionFactors(C);
Endomorphisms of the Jacobian
Of -type over
Endomorphism ring over :
an order of index in | ||
Smallest field over which all endomorphisms are defined:
Galois number field with defining polynomial
Not of -type over
Endomorphism ring over :
a non-Eichler order of index in a maximal order of | ||
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);