y 2 + y = − 6 x 6 − 10 x 4 − 5 x 2 − 1 y^2 + y = -6x^6 - 10x^4 - 5x^2 - 1 y 2 + y = − 6 x 6 − 1 0 x 4 − 5 x 2 − 1
(homogenize , simplify )
y 2 + z 3 y = − 6 x 6 − 10 x 4 z 2 − 5 x 2 z 4 − z 6 y^2 + z^3y = -6x^6 - 10x^4z^2 - 5x^2z^4 - z^6 y 2 + z 3 y = − 6 x 6 − 1 0 x 4 z 2 − 5 x 2 z 4 − z 6
(dehomogenize , simplify )
y 2 = − 24 x 6 − 40 x 4 − 20 x 2 − 3 y^2 = -24x^6 - 40x^4 - 20x^2 - 3 y 2 = − 2 4 x 6 − 4 0 x 4 − 2 0 x 2 − 3
(homogenize , minimize )
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-1, 0, -5, 0, -10, 0, -6]), R([1]));
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-1, 0, -5, 0, -10, 0, -6], R![1]);
sage: X = HyperellipticCurve(R([-3, 0, -20, 0, -40, 0, -24]))
magma: X,pi:= SimplifiedModel(C);
Conductor : N N N = = = 778752 778752 7 7 8 7 5 2 = = = 2 9 ⋅ 3 2 ⋅ 1 3 2 2^{9} \cdot 3^{2} \cdot 13^{2} 2 9 ⋅ 3 2 ⋅ 1 3 2
magma: Conductor(LSeries(C)); Factorization($1);
Discriminant : Δ \Delta Δ = = = − 778752 -778752 − 7 7 8 7 5 2 = = = − 2 9 ⋅ 3 2 ⋅ 1 3 2 - 2^{9} \cdot 3^{2} \cdot 13^{2} − 2 9 ⋅ 3 2 ⋅ 1 3 2
magma: Discriminant(C); Factorization(Integers()!$1);
I 2 I_2 I 2 = = = 1880 1880 1 8 8 0 = = =
2 3 ⋅ 5 ⋅ 47 2^{3} \cdot 5 \cdot 47 2 3 ⋅ 5 ⋅ 4 7
I 4 I_4 I 4 = = = 1405 1405 1 4 0 5 = = =
5 ⋅ 281 5 \cdot 281 5 ⋅ 2 8 1
I 6 I_6 I 6 = = = 879765 879765 8 7 9 7 6 5 = = =
3 ⋅ 5 ⋅ 89 ⋅ 659 3 \cdot 5 \cdot 89 \cdot 659 3 ⋅ 5 ⋅ 8 9 ⋅ 6 5 9
I 10 I_{10} I 1 0 = = = 3042 3042 3 0 4 2 = = =
2 ⋅ 3 2 ⋅ 1 3 2 2 \cdot 3^{2} \cdot 13^{2} 2 ⋅ 3 2 ⋅ 1 3 2
J 2 J_2 J 2 = = = 3760 3760 3 7 6 0 = = =
2 4 ⋅ 5 ⋅ 47 2^{4} \cdot 5 \cdot 47 2 4 ⋅ 5 ⋅ 4 7
J 4 J_4 J 4 = = = 585320 585320 5 8 5 3 2 0 = = =
2 3 ⋅ 5 ⋅ 14633 2^{3} \cdot 5 \cdot 14633 2 3 ⋅ 5 ⋅ 1 4 6 3 3
J 6 J_6 J 6 = = = 120706560 120706560 1 2 0 7 0 6 5 6 0 = = =
2 9 ⋅ 3 2 ⋅ 5 ⋅ 1 3 2 ⋅ 31 2^{9} \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 31 2 9 ⋅ 3 2 ⋅ 5 ⋅ 1 3 2 ⋅ 3 1
J 8 J_8 J 8 = = = 27814290800 27814290800 2 7 8 1 4 2 9 0 8 0 0 = = =
2 4 ⋅ 5 2 ⋅ 69535727 2^{4} \cdot 5^{2} \cdot 69535727 2 4 ⋅ 5 2 ⋅ 6 9 5 3 5 7 2 7
J 10 J_{10} J 1 0 = = = 778752 778752 7 7 8 7 5 2 = = =
2 9 ⋅ 3 2 ⋅ 1 3 2 2^{9} \cdot 3^{2} \cdot 13^{2} 2 9 ⋅ 3 2 ⋅ 1 3 2
g 1 g_1 g 1 = = = 1467808044800000 / 1521 1467808044800000/1521 1 4 6 7 8 0 8 0 4 4 8 0 0 0 0 0 / 1 5 2 1
g 2 g_2 g 2 = = = 60769678360000 / 1521 60769678360000/1521 6 0 7 6 9 6 7 8 3 6 0 0 0 0 / 1 5 2 1
g 3 g_3 g 3 = = = 2191328000 2191328000 2 1 9 1 3 2 8 0 0 0
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
A u t ( X ) \mathrm{Aut}(X) A u t ( X ) ≃ \simeq ≃
C 2 2 C_2^2 C 2 2
magma: AutomorphismGroup(C); IdentifyGroup($1);
A u t ( X Q ‾ ) \mathrm{Aut}(X_{\overline{\Q}}) A u t ( X Q ) ≃ \simeq ≃
D 4 D_4 D 4
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
magma: []; // minimal model
magma: []; // simplified model
Number of rational Weierstrass points : 0 0 0
magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
This curve is locally solvable except over R \R R .
magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
Group structure : Z ⊕ Z ⊕ Z / 2 Z \Z \oplus \Z \oplus \Z/{2}\Z Z ⊕ Z ⊕ Z / 2 Z
magma: MordellWeilGroupGenus2(Jacobian(C));
Generator
D 0 D_0 D 0
Height
Order
D 0 − D ∞ D_0 - D_\infty D 0 − D ∞
5 x 2 + 3 z 2 5x^2 + 3z^2 5 x 2 + 3 z 2
= = =
0 , 0, 0 ,
10 y 10y 1 0 y
= = =
3 x z 2 − 5 z 3 3xz^2 - 5z^3 3 x z 2 − 5 z 3
2.675228 2.675228 2 . 6 7 5 2 2 8
∞ \infty ∞
D 0 − D ∞ D_0 - D_\infty D 0 − D ∞
x 2 + z 2 x^2 + z^2 x 2 + z 2
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0.762168 0.762168 0 . 7 6 2 1 6 8
∞ \infty ∞
D 0 − D ∞ D_0 - D_\infty D 0 − D ∞
2 x 2 + z 2 2x^2 + z^2 2 x 2 + z 2
= = =
0 , 0, 0 ,
2 y 2y 2 y
= = =
− z 3 -z^3 − z 3
0 0 0
2 2 2
Generator
D 0 D_0 D 0
Height
Order
D 0 − D ∞ D_0 - D_\infty D 0 − D ∞
5 x 2 + 3 z 2 5x^2 + 3z^2 5 x 2 + 3 z 2
= = =
0 , 0, 0 ,
10 y 10y 1 0 y
= = =
3 x z 2 − 5 z 3 3xz^2 - 5z^3 3 x z 2 − 5 z 3
2.675228 2.675228 2 . 6 7 5 2 2 8
∞ \infty ∞
D 0 − D ∞ D_0 - D_\infty D 0 − D ∞
x 2 + z 2 x^2 + z^2 x 2 + z 2
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0.762168 0.762168 0 . 7 6 2 1 6 8
∞ \infty ∞
D 0 − D ∞ D_0 - D_\infty D 0 − D ∞
2 x 2 + z 2 2x^2 + z^2 2 x 2 + z 2
= = =
0 , 0, 0 ,
2 y 2y 2 y
= = =
− z 3 -z^3 − z 3
0 0 0
2 2 2
Generator
D 0 D_0 D 0
Height
Order
D 0 − D ∞ D_0 - D_\infty D 0 − D ∞
5 x 2 + 3 z 2 5x^2 + 3z^2 5 x 2 + 3 z 2
= = =
0 , 0, 0 ,
10 y 10y 1 0 y
= = =
6 x z 2 − 9 z 3 6xz^2 - 9z^3 6 x z 2 − 9 z 3
2.675228 2.675228 2 . 6 7 5 2 2 8
∞ \infty ∞
D 0 − D ∞ D_0 - D_\infty D 0 − D ∞
x 2 + z 2 x^2 + z^2 x 2 + z 2
= = =
0 , 0, 0 ,
y y y
= = =
z 3 z^3 z 3
0.762168 0.762168 0 . 7 6 2 1 6 8
∞ \infty ∞
D 0 − D ∞ D_0 - D_\infty D 0 − D ∞
2 x 2 + z 2 2x^2 + z^2 2 x 2 + z 2
= = =
0 , 0, 0 ,
2 y 2y 2 y
= = =
− z 3 -z^3 − z 3
0 0 0
2 2 2
2-torsion field : 8.0.151613669376.4
For primes ℓ ≥ 5 \ell \ge 5 ℓ ≥ 5 the Galois representation data has not been computed for this curve since it is not generic.
For primes ℓ ≤ 3 \ell \le 3 ℓ ≤ 3 , the image of the mod-ℓ \ell ℓ Galois representation is listed in the table below, whenever it is not all of GSp ( 4 , F ℓ ) \GSp(4,\F_\ell) GSp ( 4 , F ℓ ) .
S T \mathrm{ST} S T ≃ \simeq ≃ J ( E 1 ) J(E_1) J ( E 1 )
S T 0 \mathrm{ST}^0 S T 0 ≃ \simeq ≃ S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Splits over Q \Q Q
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes: Elliptic curve isogeny class 2496.u Elliptic curve isogeny class 312.b
magma: HeuristicDecompositionFactors(C);
Of GL 2 \GL_2 GL 2 -type over Q \Q Q
Endomorphism ring over Q \Q Q :
End ( J ) \End (J_{}) E n d ( J ) ≃ \simeq ≃ an order of index 2 2 2 in Z × Z \Z \times \Z Z × Z End ( J ) ⊗ Q \End (J_{}) \otimes \Q E n d ( J ) ⊗ Q ≃ \simeq ≃ Q \Q Q × \times × Q \Q Q End ( J ) ⊗ R \End (J_{}) \otimes \R E n d ( J ) ⊗ R ≃ \simeq ≃ R × R \R \times \R R × R
Smallest field over which all endomorphisms are defined:
Galois number field K = Q ( a ) ≃ K = \Q (a) \simeq K = Q ( a ) ≃ Q ( 2 ) \Q(\sqrt{2}) Q ( 2 ) with defining polynomial x 2 − 2 x^{2} - 2 x 2 − 2
Not of GL 2 \GL_2 GL 2 -type over Q ‾ \overline{\Q} Q
Endomorphism ring over Q ‾ \overline{\Q} Q :
End ( J Q ‾ ) \End (J_{\overline{\Q}}) E n d ( J Q ) ≃ \simeq ≃ a non-Eichler order of index 4 4 4 in a maximal order of End ( J Q ‾ ) ⊗ Q \End (J_{\overline{\Q}}) \otimes \Q E n d ( J Q ) ⊗ Q End ( J Q ‾ ) ⊗ Q \End (J_{\overline{\Q}}) \otimes \Q E n d ( J Q ) ⊗ Q ≃ \simeq ≃ M 2 ( \mathrm{M}_2( M 2 ( Q \Q Q ) ) ) End ( J Q ‾ ) ⊗ R \End (J_{\overline{\Q}}) \otimes \R E n d ( J Q ) ⊗ R ≃ \simeq ≃ M 2 ( R ) \mathrm{M}_2 (\R) M 2 ( R )
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);