Minimal equation
Minimal equation
Simplified equation
$y^2 + (x + 1)y = -x^6 + 4x^5 - 4x^4 - 2x^3 + 10x - 9$ | (homogenize, simplify) |
$y^2 + (xz^2 + z^3)y = -x^6 + 4x^5z - 4x^4z^2 - 2x^3z^3 + 10xz^5 - 9z^6$ | (dehomogenize, simplify) |
$y^2 = -4x^6 + 16x^5 - 16x^4 - 8x^3 + x^2 + 42x - 35$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(784\) | \(=\) | \( 2^{4} \cdot 7^{2} \) | magma: Conductor(LSeries(C)); Factorization($1);
|
Discriminant: | \( \Delta \) | \(=\) | \(-76832\) | \(=\) | \( - 2^{5} \cdot 7^{4} \) | magma: Discriminant(C); Factorization(Integers()!$1);
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(1520\) | \(=\) | \( 2^{4} \cdot 5 \cdot 19 \) |
\( I_4 \) | \(=\) | \(132280\) | \(=\) | \( 2^{3} \cdot 5 \cdot 3307 \) |
\( I_6 \) | \(=\) | \(50979316\) | \(=\) | \( 2^{2} \cdot 23 \cdot 554123 \) |
\( I_{10} \) | \(=\) | \(307328\) | \(=\) | \( 2^{7} \cdot 7^{4} \) |
\( J_2 \) | \(=\) | \(760\) | \(=\) | \( 2^{3} \cdot 5 \cdot 19 \) |
\( J_4 \) | \(=\) | \(2020\) | \(=\) | \( 2^{2} \cdot 5 \cdot 101 \) |
\( J_6 \) | \(=\) | \(6076\) | \(=\) | \( 2^{2} \cdot 7^{2} \cdot 31 \) |
\( J_8 \) | \(=\) | \(134340\) | \(=\) | \( 2^{2} \cdot 3 \cdot 5 \cdot 2239 \) |
\( J_{10} \) | \(=\) | \(76832\) | \(=\) | \( 2^{5} \cdot 7^{4} \) |
\( g_1 \) | \(=\) | \(7923516800000/2401\) | ||
\( g_2 \) | \(=\) | \(27710360000/2401\) | ||
\( g_3 \) | \(=\) | \(2238200/49\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ | magma: AutomorphismGroup(C); IdentifyGroup($1);
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ | magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
Rational points
Number of rational Weierstrass points: \(0\)
This curve is locally solvable except over $\R$ and $\Q_{2}$.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{6}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - D_\infty\) | \(x^2 - 3xz + 3z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(xz^2 - 3z^3\) | \(0\) | \(6\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - D_\infty\) | \(x^2 - 3xz + 3z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(xz^2 - 3z^3\) | \(0\) | \(6\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - D_\infty\) | \(x^2 - 3xz + 3z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(3xz^2 - 5z^3\) | \(0\) | \(6\) |
2-torsion field: 8.0.3211264.1
BSD invariants
Hasse-Weil conjecture: | verified |
Analytic rank: | \(0\) |
Mordell-Weil rank: | \(0\) |
2-Selmer rank: | \(1\) |
Regulator: | \( 1 \) |
Real period: | \( 3.756700 \) |
Tamagawa product: | \( 3 \) |
Torsion order: | \( 6 \) |
Leading coefficient: | \( 0.313058 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | L-factor | Cluster picture |
---|---|---|---|---|---|
\(2\) | \(4\) | \(5\) | \(1\) | \(1 + T\) | |
\(7\) | \(2\) | \(4\) | \(3\) | \(( 1 - T )^{2}\) |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.45.1 | yes |
\(3\) | 3.2160.20 | yes |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\times\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Splits over \(\Q\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
Elliptic curve isogeny class 56.b
Elliptic curve isogeny class 14.a
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | an order of index \(4\) in \(\Z \times \Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).