Properties

Label 797.a.797.1
Conductor 797797
Discriminant 797797
Mordell-Weil group Z/7Z\Z/{7}\Z
Sato-Tate group USp(4)\mathrm{USp}(4)
End(JQ)R\End(J_{\overline{\Q}}) \otimes \R R\R
End(JQ)Q\End(J_{\overline{\Q}}) \otimes \Q Q\Q
End(J)Q\End(J) \otimes \Q Q\Q
Q\overline{\Q}-simple yes
GL2\mathrm{GL}_2-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

y2+y=x5x4+x3y^2 + y = x^5 - x^4 + x^3 (homogenize, simplify)
y2+z3y=x5zx4z2+x3z3y^2 + z^3y = x^5z - x^4z^2 + x^3z^3 (dehomogenize, simplify)
y2=4x54x4+4x3+1y^2 = 4x^5 - 4x^4 + 4x^3 + 1 (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 0, 0, 1, -1, 1]), R([1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 0, 0, 1, -1, 1], R![1]);
 
sage: X = HyperellipticCurve(R([1, 0, 0, 4, -4, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: N N  ==  797797 == 797 797
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: Δ \Delta  ==  797797 == 797 797
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

I2 I_2  == 2424 ==  233 2^{3} \cdot 3
I4 I_4  == 528528 ==  24311 2^{4} \cdot 3 \cdot 11
I6 I_6  == 76087608 ==  233317 2^{3} \cdot 3 \cdot 317
I10 I_{10}  == 31883188 ==  22797 2^{2} \cdot 797
J2 J_2  == 1212 ==  223 2^{2} \cdot 3
J4 J_4  == 82-82 ==  241 - 2 \cdot 41
J6 J_6  == 548-548 ==  22137 - 2^{2} \cdot 137
J8 J_8  == 3325-3325 ==  52719 - 5^{2} \cdot 7 \cdot 19
J10 J_{10}  == 797797 ==  797 797
g1 g_1  == 248832/797248832/797
g2 g_2  == 141696/797-141696/797
g3 g_3  == 78912/797-78912/797

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

Aut(X)\mathrm{Aut}(X)\simeq C2C_2
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
Aut(XQ)\mathrm{Aut}(X_{\overline{\Q}})\simeq C2C_2
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: (1:0:0),(0:0:1),(0:1:1)(1 : 0 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1)
All points: (1:0:0),(0:0:1),(0:1:1)(1 : 0 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1)
All points: (1:0:0),(0:1:1),(0:1:1)(1 : 0 : 0),\, (0 : -1 : 1),\, (0 : 1 : 1)

magma: [C![0,-1,1],C![0,0,1],C![1,0,0]]; // minimal model
 
magma: [C![0,-1,1],C![0,1,1],C![1,0,0]]; // simplified model
 

Number of rational Weierstrass points: 11

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: Z/7Z\Z/{7}\Z

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator D0D_0 Height Order
D02(1:0:0)D_0 - 2 \cdot(1 : 0 : 0) x2xz+z2x^2 - xz + z^2 == 0,0, yy == 00 00 77
Generator D0D_0 Height Order
D02(1:0:0)D_0 - 2 \cdot(1 : 0 : 0) x2xz+z2x^2 - xz + z^2 == 0,0, yy == 00 00 77
Generator D0D_0 Height Order
D02(1:0:0)D_0 - 2 \cdot(1 : 0 : 0) x2xz+z2x^2 - xz + z^2 == 0,0, yy == z3z^3 00 77

2-torsion field: 5.1.12752.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: 00
Mordell-Weil rank: 00
2-Selmer rank:00
Regulator: 1 1
Real period: 17.44098 17.44098
Tamagawa product: 1 1
Torsion order:7 7
Leading coefficient: 0.355938 0.355938
Analytic order of Ш: 1 1   (rounded)
Order of Ш:square

Local invariants

Prime ord(NN) ord(Δ\Delta) Tamagawa L-factor Cluster picture
797797 11 11 11 (1+T)(1+14T+797T2)( 1 + T )( 1 + 14 T + 797 T^{2} )

Galois representations

The mod-\ell Galois representation has maximal image GSp(4,F)\GSp(4,\F_\ell) for all primes \ell except those listed.

Prime \ell mod-\ell image Is torsion prime?
22 2.6.1 no
77 not computed yes

Sato-Tate group

ST\mathrm{ST}\simeq USp(4)\mathrm{USp}(4)
ST0\mathrm{ST}^0\simeq USp(4)\mathrm{USp}(4)

Decomposition of the Jacobian

Simple over Q\overline{\Q}

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of GL2\GL_2-type over Q\Q

Endomorphism ring over Q\Q:

End(J)\End (J_{})\simeqZ\Z
End(J)Q\End (J_{}) \otimes \Q \simeqQ\Q
End(J)R\End (J_{}) \otimes \R\simeq R\R

All Q\overline{\Q}-endomorphisms of the Jacobian are defined over Q\Q.

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);