Properties

Label 841.a.841.1
Conductor 841841
Discriminant 841-841
Mordell-Weil group Z/7Z\Z/{7}\Z
Sato-Tate group SU(2)×SU(2)\mathrm{SU}(2)\times\mathrm{SU}(2)
End(JQ)R\End(J_{\overline{\Q}}) \otimes \R R×R\R \times \R
End(JQ)Q\End(J_{\overline{\Q}}) \otimes \Q RM\mathsf{RM}
End(J)Q\End(J) \otimes \Q RM\mathsf{RM}
Q\overline{\Q}-simple yes
GL2\mathrm{GL}_2-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

The Jacobian of this curve is isogenous to that of the modular curve X0(29)X_0(29) (which has discriminant 29529^5).

Minimal equation

Minimal equation

Simplified equation

y2+(x3+x2+x)y=x4+x3+3x2+x+2y^2 + (x^3 + x^2 + x)y = x^4 + x^3 + 3x^2 + x + 2 (homogenize, simplify)
y2+(x3+x2z+xz2)y=x4z2+x3z3+3x2z4+xz5+2z6y^2 + (x^3 + x^2z + xz^2)y = x^4z^2 + x^3z^3 + 3x^2z^4 + xz^5 + 2z^6 (dehomogenize, simplify)
y2=x6+2x5+7x4+6x3+13x2+4x+8y^2 = x^6 + 2x^5 + 7x^4 + 6x^3 + 13x^2 + 4x + 8 (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([2, 1, 3, 1, 1]), R([0, 1, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![2, 1, 3, 1, 1], R![0, 1, 1, 1]);
 
sage: X = HyperellipticCurve(R([8, 4, 13, 6, 7, 2, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: N N  ==  841841 == 292 29^{2}
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: Δ \Delta  ==  841-841 == 292 - 29^{2}
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

I2 I_2  == 14201420 ==  22571 2^{2} \cdot 5 \cdot 71
I4 I_4  == 42014201 ==  4201 4201
I6 I_6  == 19738991973899 ==  6132359 61 \cdot 32359
I10 I_{10}  == 107648107648 ==  27292 2^{7} \cdot 29^{2}
J2 J_2  == 355355 ==  571 5 \cdot 71
J4 J_4  == 50765076 ==  223347 2^{2} \cdot 3^{3} \cdot 47
J6 J_6  == 9340893408 ==  2537139 2^{5} \cdot 3 \cdot 7 \cdot 139
J8 J_8  == 18485161848516 ==  223154043 2^{2} \cdot 3 \cdot 154043
J10 J_{10}  == 841841 ==  292 29^{2}
g1 g_1  == 5638216721875/8415638216721875/841
g2 g_2  == 227094529500/841227094529500/841
g3 g_3  == 11771743200/84111771743200/841

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

Aut(X)\mathrm{Aut}(X)\simeq C2C_2
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
Aut(XQ)\mathrm{Aut}(X_{\overline{\Q}})\simeq C2C_2
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: (1:0:0),(1:1:0)(1 : 0 : 0),\, (1 : -1 : 0)
All points: (1:0:0),(1:1:0)(1 : 0 : 0),\, (1 : -1 : 0)
All points: (1:1:0),(1:1:0)(1 : -1 : 0),\, (1 : 1 : 0)

magma: [C![1,-1,0],C![1,0,0]]; // minimal model
 
magma: [C![1,-1,0],C![1,1,0]]; // simplified model
 

Number of rational Weierstrass points: 00

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: Z/7Z\Z/{7}\Z

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator D0D_0 Height Order
D0(1:1:0)(1:0:0)D_0 - (1 : -1 : 0) - (1 : 0 : 0) x2+z2x^2 + z^2 == 0,0, yy == z3z^3 00 77
Generator D0D_0 Height Order
D0(1:1:0)(1:0:0)D_0 - (1 : -1 : 0) - (1 : 0 : 0) x2+z2x^2 + z^2 == 0,0, yy == z3z^3 00 77
Generator D0D_0 Height Order
D0(1:1:0)(1:1:0)D_0 - (1 : -1 : 0) - (1 : 1 : 0) x2+z2x^2 + z^2 == 0,0, yy == x3+x2z+xz2+2z3x^3 + x^2z + xz^2 + 2z^3 00 77

2-torsion field: 6.0.53824.1

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: 00
Mordell-Weil rank: 00
2-Selmer rank:00
Regulator: 1 1
Real period: 14.28455 14.28455
Tamagawa product: 1 1
Torsion order:7 7
Leading coefficient: 0.291521 0.291521
Analytic order of Ш: 1 1   (rounded)
Order of Ш:square

Local invariants

Prime ord(NN) ord(Δ\Delta) Tamagawa L-factor Cluster picture
2929 22 22 11 (1T)2( 1 - T )^{2}

Galois representations

For primes 5\ell \ge 5 the Galois representation data has not been computed for this curve since it is not generic.

For primes 3\ell \le 3, the image of the mod-\ell Galois representation is listed in the table below, whenever it is not all of GSp(4,F)\GSp(4,\F_\ell).

Prime \ell mod-\ell image Is torsion prime?
22 2.60.2 no
33 3.72.2 no

Sato-Tate group

ST\mathrm{ST}\simeq SU(2)×SU(2)\mathrm{SU}(2)\times\mathrm{SU}(2)
ST0\mathrm{ST}^0\simeq SU(2)×SU(2)\mathrm{SU}(2)\times\mathrm{SU}(2)

Decomposition of the Jacobian

Simple over Q\overline{\Q}

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of GL2\GL_2-type over Q\Q

Endomorphism ring over Q\Q:

End(J)\End (J_{})\simeqZ[2]\Z [\sqrt{2}]
End(J)Q\End (J_{}) \otimes \Q \simeqQ(2)\Q(\sqrt{2})
End(J)R\End (J_{}) \otimes \R\simeq R×R\R \times \R

All Q\overline{\Q}-endomorphisms of the Jacobian are defined over Q\Q.

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);