The Jacobian of this curve is isogenous to that of the modular curve (which has discriminant ).
Minimal equation
Minimal equation
Simplified equation
(homogenize, simplify) | |
(dehomogenize, simplify) | |
(homogenize, minimize) | |
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([2, 1, 3, 1, 1]), R([0, 1, 1, 1]));
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![2, 1, 3, 1, 1], R![0, 1, 1, 1]);
sage: X = HyperellipticCurve(R([8, 4, 13, 6, 7, 2, 1]))
magma: X,pi:= SimplifiedModel(C);
Invariants
Conductor: | magma: Conductor(LSeries(C)); Factorization($1);
|
|||||
Discriminant: | magma: Discriminant(C); Factorization(Integers()!$1);
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
Automorphism group
magma: AutomorphismGroup(C); IdentifyGroup($1);
|
|||
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
Rational points
magma: [C![1,-1,0],C![1,0,0]]; // minimal model
magma: [C![1,-1,0],C![1,1,0]]; // simplified model
Number of rational Weierstrass points:
magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
This curve is locally solvable everywhere.
magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
Mordell-Weil group of the Jacobian
magma: MordellWeilGroupGenus2(Jacobian(C));
BSD invariants
Hasse-Weil conjecture: | verified |
Analytic rank: | |
Mordell-Weil rank: | |
2-Selmer rank: | |
Regulator: | |
Real period: | |
Tamagawa product: | |
Torsion order: | |
Leading coefficient: | |
Analytic order of Ш: | (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord() | ord() | Tamagawa | L-factor | Cluster picture |
---|---|---|---|---|---|
Galois representations
For primes the Galois representation data has not been computed for this curve since it is not generic.
For primes , the image of the mod- Galois representation is listed in the table below, whenever it is not all of .
Prime | mod- image | Is torsion prime? |
---|---|---|
2.60.2 | no | |
3.72.2 | no |
Sato-Tate group
Decomposition of the Jacobian
Simple over
magma: HeuristicDecompositionFactors(C);
Endomorphisms of the Jacobian
Of -type over
Endomorphism ring over :
All -endomorphisms of the Jacobian are defined over .
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);