y2+(x3+x+1)y=−x4−x2 |
(homogenize, simplify) |
y2+(x3+xz2+z3)y=−x4z2−x2z4 |
(dehomogenize, simplify) |
y2=x6−2x4+2x3−3x2+2x+1 |
(homogenize, minimize) |
sage:R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 0, -1, 0, -1]), R([1, 1, 0, 1]));
magma:R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 0, -1, 0, -1], R![1, 1, 0, 1]);
sage:X = HyperellipticCurve(R([1, 2, -3, 2, -2, 0, 1]))
magma:X,pi:= SimplifiedModel(C);
Conductor: | N | = | 893 | = | 19⋅47 |
magma:Conductor(LSeries(C)); Factorization($1);
|
Discriminant: | Δ | = | 893 | = | 19⋅47 |
magma:Discriminant(C); Factorization(Integers()!$1);
|
I2 | = | 156 | = |
22⋅3⋅13 |
I4 | = | −519 | = |
−3⋅173 |
I6 | = | −11805 | = |
−3⋅5⋅787 |
I10 | = | −114304 | = |
−27⋅19⋅47 |
J2 | = | 39 | = |
3⋅13 |
J4 | = | 85 | = |
5⋅17 |
J6 | = | 67 | = |
67 |
J8 | = | −1153 | = |
−1153 |
J10 | = | −893 | = |
−19⋅47 |
g1 | = | −90224199/893 |
g2 | = | −5042115/893 |
g3 | = | −101907/893 |
sage:C.igusa_clebsch_invariants(); [factor(a) for a in _]
magma:IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
Aut(X) | ≃ |
C2 |
magma:AutomorphismGroup(C); IdentifyGroup($1);
|
Aut(XQ) | ≃ |
C2 |
magma:AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
All points |
(1:0:0) |
(1:−1:0) |
(0:0:1) |
(0:−1:1) |
(1:−1:1) |
(1:−2:1) |
(−2:4:1) |
(−2:5:1) |
|
|
|
|
All points |
(1:0:0) |
(1:−1:0) |
(0:0:1) |
(0:−1:1) |
(1:−1:1) |
(1:−2:1) |
(−2:4:1) |
(−2:5:1) |
|
|
|
|
All points |
(1:−1:0) |
(1:1:0) |
(0:−1:1) |
(0:1:1) |
(1:−1:1) |
(1:1:1) |
(−2:−1:1) |
(−2:1:1) |
|
|
|
|
magma:[C![-2,4,1],C![-2,5,1],C![0,-1,1],C![0,0,1],C![1,-2,1],C![1,-1,0],C![1,-1,1],C![1,0,0]]; // minimal model
magma:[C![-2,-1,1],C![-2,1,1],C![0,-1,1],C![0,1,1],C![1,-1,1],C![1,-1,0],C![1,1,1],C![1,1,0]]; // simplified model
Number of rational Weierstrass points: 0
magma:#Roots(HyperellipticPolynomials(SimplifiedModel(C)));
This curve is locally solvable everywhere.
magma:f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
Group structure: Z
magma:MordellWeilGroupGenus2(Jacobian(C));
Generator |
D0 |
|
|
|
|
|
Height |
Order |
D0−2⋅(1:−1:0) |
z2 |
= |
0, |
y |
= |
0 |
0.006429 |
∞ |
Generator |
D0 |
|
|
|
|
|
Height |
Order |
D0−2⋅(1:−1:0) |
z2 |
= |
0, |
y |
= |
0 |
0.006429 |
∞ |
Generator |
D0 |
|
|
|
|
|
Height |
Order |
D0−2⋅(1:−1:0) |
z2 |
= |
0, |
y |
= |
x3+xz2+z3 |
0.006429 |
∞ |
2-torsion field: 6.2.57152.1
The mod-ℓ Galois representation
has maximal image GSp(4,Fℓ)
for all primes ℓ
.
Simple over Q
magma:HeuristicDecompositionFactors(C);
Not of GL2-type over Q
Endomorphism ring over Q:
End(J) | ≃ | Z |
End(J)⊗Q | ≃ | Q |
End(J)⊗R | ≃ | R |
All Q-endomorphisms of the Jacobian are defined over Q.
magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
magma:HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
magma:HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);