Minimal equation
Minimal equation
Simplified equation
$y^2 + xy = 5x^5 + x^4 - 19x^3 + 18x^2 - 5x$ | (homogenize, simplify) |
$y^2 + xz^2y = 5x^5z + x^4z^2 - 19x^3z^3 + 18x^2z^4 - 5xz^5$ | (dehomogenize, simplify) |
$y^2 = 20x^5 + 4x^4 - 76x^3 + 73x^2 - 20x$ | (homogenize, minimize) |
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -5, 18, -19, 1, 5]), R([0, 1]));
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -5, 18, -19, 1, 5], R![0, 1]);
sage: X = HyperellipticCurve(R([0, -20, 73, -76, 4, 20]))
magma: X,pi:= SimplifiedModel(C);
Invariants
Conductor: | \( N \) | \(=\) | \(925\) | \(=\) | \( 5^{2} \cdot 37 \) | magma: Conductor(LSeries(C)); Factorization($1);
|
Discriminant: | \( \Delta \) | \(=\) | \(23125\) | \(=\) | \( 5^{4} \cdot 37 \) | magma: Discriminant(C); Factorization(Integers()!$1);
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(3496\) | \(=\) | \( 2^{3} \cdot 19 \cdot 23 \) |
\( I_4 \) | \(=\) | \(50536\) | \(=\) | \( 2^{3} \cdot 6317 \) |
\( I_6 \) | \(=\) | \(55764955\) | \(=\) | \( 5 \cdot 11152991 \) |
\( I_{10} \) | \(=\) | \(92500\) | \(=\) | \( 2^{2} \cdot 5^{4} \cdot 37 \) |
\( J_2 \) | \(=\) | \(1748\) | \(=\) | \( 2^{2} \cdot 19 \cdot 23 \) |
\( J_4 \) | \(=\) | \(118890\) | \(=\) | \( 2 \cdot 3^{2} \cdot 5 \cdot 1321 \) |
\( J_6 \) | \(=\) | \(10257041\) | \(=\) | \( 10257041 \) |
\( J_8 \) | \(=\) | \(948618892\) | \(=\) | \( 2^{2} \cdot 13 \cdot 18242671 \) |
\( J_{10} \) | \(=\) | \(23125\) | \(=\) | \( 5^{4} \cdot 37 \) |
\( g_1 \) | \(=\) | \(16319511005139968/23125\) | ||
\( g_2 \) | \(=\) | \(126998797147776/4625\) | ||
\( g_3 \) | \(=\) | \(31340429803664/23125\) |
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ | magma: AutomorphismGroup(C); IdentifyGroup($1);
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ | magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
Rational points
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (1 : 0 : 1),\, (1 : -1 : 1),\, (4 : -50 : 5)\)
magma: [C![0,0,1],C![1,-1,1],C![1,0,0],C![1,0,1],C![4,-50,5]]; // minimal model
magma: [C![0,0,1],C![1,-1,1],C![1,0,0],C![1,1,1],C![4,0,5]]; // simplified model
Number of rational Weierstrass points: \(3\)
magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
This curve is locally solvable everywhere.
magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{2}\Z \oplus \Z/{8}\Z\)
magma: MordellWeilGroupGenus2(Jacobian(C));
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((0 : 0 : 1) + (4 : -50 : 5) - 2 \cdot(1 : 0 : 0)\) | \(x (5x - 4z)\) | \(=\) | \(0,\) | \(2y\) | \(=\) | \(-xz^2\) | \(0\) | \(2\) |
\((1 : 0 : 1) + (4 : -50 : 5) - 2 \cdot(1 : 0 : 0)\) | \((x - z) (5x - 4z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(2xz^2 - 2z^3\) | \(0\) | \(8\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((0 : 0 : 1) + (4 : -50 : 5) - 2 \cdot(1 : 0 : 0)\) | \(x (5x - 4z)\) | \(=\) | \(0,\) | \(2y\) | \(=\) | \(-xz^2\) | \(0\) | \(2\) |
\((1 : 0 : 1) + (4 : -50 : 5) - 2 \cdot(1 : 0 : 0)\) | \((x - z) (5x - 4z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(2xz^2 - 2z^3\) | \(0\) | \(8\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((0 : 0 : 1) - (1 : 0 : 0)\) | \(x (5x - 4z)\) | \(=\) | \(0,\) | \(2y\) | \(=\) | \(-xz^2\) | \(0\) | \(2\) |
\((1 : 1 : 1) + (4 : 0 : 5) - 2 \cdot(1 : 0 : 0)\) | \((x - z) (5x - 4z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(5xz^2 - 4z^3\) | \(0\) | \(8\) |
BSD invariants
Hasse-Weil conjecture: | unverified |
Analytic rank: | \(0\) |
Mordell-Weil rank: | \(0\) |
2-Selmer rank: | \(2\) |
Regulator: | \( 1 \) |
Real period: | \( 20.87893 \) |
Tamagawa product: | \( 4 \) |
Torsion order: | \( 16 \) |
Leading coefficient: | \( 0.326233 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | L-factor | Cluster picture |
---|---|---|---|---|---|
\(5\) | \(2\) | \(4\) | \(4\) | \(( 1 - T )( 1 + T )\) | |
\(37\) | \(1\) | \(1\) | \(1\) | \(( 1 - T )( 1 - 6 T + 37 T^{2} )\) |
Galois representations
The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.120.3 | yes |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
magma: HeuristicDecompositionFactors(C);
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | \(\Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);