Label |
Class |
Conductor |
Discriminant |
Rank* |
2-Selmer rank |
Torsion |
$\textrm{End}^0(J_{\overline\Q})$ |
$\textrm{End}^0(J)$ |
$\GL_2\textsf{-type}$ |
Sato-Tate |
Nonmaximal primes |
$\Q$-simple |
\(\overline{\Q}\)-simple |
\(\Aut(X)\) |
\(\Aut(X_{\overline{\Q}})\) |
$\Q$-points |
$\Q$-Weierstrass points |
mod-$\ell$ images |
Locally solvable |
Square Ш* |
Analytic Ш* |
Tamagawa |
Regulator |
Real period |
Leading coefficient |
Igusa-Clebsch invariants |
Igusa invariants |
G2-invariants |
Equation |
2916.b.11664.1 |
2916.b |
\( 2^{2} \cdot 3^{6} \) |
\( - 2^{4} \cdot 3^{6} \) |
$0$ |
$0$ |
$\Z/3\Z\oplus\Z/3\Z$ |
\(\mathrm{M}_2(\mathsf{CM})\) |
\(\Q \times \Q\) |
✓ |
$D_{3,2}$ |
|
|
|
$C_2^2$ |
$C_3:D_4$ |
$4$ |
$0$ |
2.60.2, 3.17280.1 |
✓ |
✓ |
$1$ |
\( 3 \) |
\(1.000000\) |
\(17.695032\) |
\(0.655372\) |
$[40,45,555,6]$ |
$[120,330,-320,-36825,11664]$ |
$[6400000/3,440000/9,-32000/81]$ |
$y^2 + y = x^6$ |
11664.a.11664.1 |
11664.a |
\( 2^{4} \cdot 3^{6} \) |
\( 2^{4} \cdot 3^{6} \) |
$1$ |
$1$ |
$\Z/3\Z$ |
\(\mathrm{M}_2(\mathsf{CM})\) |
\(\Q \times \Q\) |
✓ |
$D_{6,2}$ |
|
|
|
$C_2^2$ |
$C_3:D_4$ |
$2$ |
$0$ |
2.120.2, 3.8640.7 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(0.900641\) |
\(10.216231\) |
\(1.022351\) |
$[40,45,555,6]$ |
$[120,330,-320,-36825,11664]$ |
$[6400000/3,440000/9,-32000/81]$ |
$y^2 + y = -x^6$ |
20736.i.373248.1 |
20736.i |
\( 2^{8} \cdot 3^{4} \) |
\( 2^{9} \cdot 3^{6} \) |
$0$ |
$1$ |
$\Z/6\Z$ |
\(\mathrm{M}_2(\mathsf{CM})\) |
\(\Q \times \Q\) |
✓ |
$D_{2,1}$ |
|
|
|
$C_2^2$ |
$C_3:D_4$ |
$2$ |
$0$ |
2.180.4, 3.8640.8 |
✓ |
✓ |
$1$ |
\( 2 \cdot 3 \) |
\(1.000000\) |
\(7.223967\) |
\(1.203994\) |
$[40,45,555,6]$ |
$[240,1320,-2560,-589200,373248]$ |
$[6400000/3,440000/9,-32000/81]$ |
$y^2 + x^3y = -2$ |
20736.k.373248.1 |
20736.k |
\( 2^{8} \cdot 3^{4} \) |
\( - 2^{9} \cdot 3^{6} \) |
$1$ |
$2$ |
$\Z/6\Z$ |
\(\mathrm{M}_2(\mathsf{CM})\) |
\(\Q \times \Q\) |
✓ |
$D_{2,1}$ |
|
|
|
$C_2^2$ |
$C_3:D_4$ |
$6$ |
$0$ |
2.180.4, 3.8640.8 |
✓ |
✓ |
$1$ |
\( 2^{2} \cdot 3 \) |
\(0.326617\) |
\(12.512277\) |
\(1.362242\) |
$[40,45,555,6]$ |
$[240,1320,-2560,-589200,373248]$ |
$[6400000/3,440000/9,-32000/81]$ |
$y^2 + x^3y = 2$ |