L(s) = 1 | + (−0.549 − 0.835i)2-s + (−0.396 + 0.918i)4-s + (−0.727 − 0.686i)5-s + (0.116 − 0.993i)7-s + (0.984 − 0.173i)8-s + (−0.173 + 0.984i)10-s + (0.957 + 0.286i)11-s + (−0.893 + 0.448i)14-s + (−0.686 − 0.727i)16-s + (−0.939 + 0.342i)17-s + (−0.342 + 0.939i)19-s + (0.918 − 0.396i)20-s + (−0.286 − 0.957i)22-s + (−0.993 + 0.116i)23-s + (0.0581 + 0.998i)25-s + ⋯ |
L(s) = 1 | + (−0.549 − 0.835i)2-s + (−0.396 + 0.918i)4-s + (−0.727 − 0.686i)5-s + (0.116 − 0.993i)7-s + (0.984 − 0.173i)8-s + (−0.173 + 0.984i)10-s + (0.957 + 0.286i)11-s + (−0.893 + 0.448i)14-s + (−0.686 − 0.727i)16-s + (−0.939 + 0.342i)17-s + (−0.342 + 0.939i)19-s + (0.918 − 0.396i)20-s + (−0.286 − 0.957i)22-s + (−0.993 + 0.116i)23-s + (0.0581 + 0.998i)25-s + ⋯ |
Λ(s)=(=(1053s/2ΓR(s)L(s)(0.0743+0.997i)Λ(1−s)
Λ(s)=(=(1053s/2ΓR(s)L(s)(0.0743+0.997i)Λ(1−s)
Degree: |
1 |
Conductor: |
1053
= 34⋅13
|
Sign: |
0.0743+0.997i
|
Analytic conductor: |
4.89011 |
Root analytic conductor: |
4.89011 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1053(200,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1053, (0: ), 0.0743+0.997i)
|
Particular Values
L(21) |
≈ |
0.05205281801+0.04831455911i |
L(21) |
≈ |
0.05205281801+0.04831455911i |
L(1) |
≈ |
0.5036563710−0.2657781071i |
L(1) |
≈ |
0.5036563710−0.2657781071i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 13 | 1 |
good | 2 | 1+(−0.549−0.835i)T |
| 5 | 1+(−0.727−0.686i)T |
| 7 | 1+(0.116−0.993i)T |
| 11 | 1+(0.957+0.286i)T |
| 17 | 1+(−0.939+0.342i)T |
| 19 | 1+(−0.342+0.939i)T |
| 23 | 1+(−0.993+0.116i)T |
| 29 | 1+(−0.893−0.448i)T |
| 31 | 1+(0.802−0.597i)T |
| 37 | 1+(−0.642+0.766i)T |
| 41 | 1+(0.549−0.835i)T |
| 43 | 1+(−0.973+0.230i)T |
| 47 | 1+(−0.802−0.597i)T |
| 53 | 1+(0.5−0.866i)T |
| 59 | 1+(−0.957+0.286i)T |
| 61 | 1+(0.396+0.918i)T |
| 67 | 1+(−0.448−0.893i)T |
| 71 | 1+(0.984+0.173i)T |
| 73 | 1+(−0.984+0.173i)T |
| 79 | 1+(−0.835+0.549i)T |
| 83 | 1+(−0.549−0.835i)T |
| 89 | 1+(0.984−0.173i)T |
| 97 | 1+(−0.727+0.686i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.71582494802515974026840576617, −20.15894882478100865251857277759, −19.55156877914132235166407452765, −18.9374172688796000844879532599, −18.105095466732332298946674369323, −17.63348994929229205207692435789, −16.518717001318757778678409600808, −15.74936504082069481713200258568, −15.24222276575982983920527442619, −14.49735167654159342476172052394, −13.81200854867663105293819760854, −12.59219063738267443708086630034, −11.507988575686474198123247495636, −11.08010754437670747814920947789, −9.94157228507991528456443278747, −8.9766724332141703751867004262, −8.5183539884280437172629648044, −7.50855312341907555169528239969, −6.64642865848303001459074975893, −6.12026500009444823664623913846, −4.93898954787326902636611431234, −4.07858076668493490655687420371, −2.81162442134658608273514505479, −1.69107424113091670759649178468, −0.03855814745008465990555668740,
1.22868795316472652546065097231, 2.01626065187981670646456811525, 3.67654760277791090460643179036, 3.99011676139415226313631246459, 4.81312213123925886730318482354, 6.39660236354069873108378549960, 7.409472949815781278000500457918, 8.124806175135320055447954979357, 8.837123621037714411933729808275, 9.79520984879455803688480642467, 10.48496549092977183468314132383, 11.5470143293660581300089164128, 11.89428738552223653350313217668, 12.922340820545108941028120736422, 13.53066280222915616361135723377, 14.54281493054377036953008302643, 15.61965121426561498083661123086, 16.62706604879509893649291490048, 17.017724182527330280422999061615, 17.75066599560881993405427581192, 18.832607576940876553783014645385, 19.58784123915464936908221988393, 20.0829045880507063195888096457, 20.64205125737251417664856769916, 21.45771456537997222185812089901