L(s) = 1 | + (−0.549 − 0.835i)2-s + (−0.396 + 0.918i)4-s + (−0.727 − 0.686i)5-s + (0.116 − 0.993i)7-s + (0.984 − 0.173i)8-s + (−0.173 + 0.984i)10-s + (0.957 + 0.286i)11-s + (−0.893 + 0.448i)14-s + (−0.686 − 0.727i)16-s + (−0.939 + 0.342i)17-s + (−0.342 + 0.939i)19-s + (0.918 − 0.396i)20-s + (−0.286 − 0.957i)22-s + (−0.993 + 0.116i)23-s + (0.0581 + 0.998i)25-s + ⋯ |
L(s) = 1 | + (−0.549 − 0.835i)2-s + (−0.396 + 0.918i)4-s + (−0.727 − 0.686i)5-s + (0.116 − 0.993i)7-s + (0.984 − 0.173i)8-s + (−0.173 + 0.984i)10-s + (0.957 + 0.286i)11-s + (−0.893 + 0.448i)14-s + (−0.686 − 0.727i)16-s + (−0.939 + 0.342i)17-s + (−0.342 + 0.939i)19-s + (0.918 − 0.396i)20-s + (−0.286 − 0.957i)22-s + (−0.993 + 0.116i)23-s + (0.0581 + 0.998i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0743 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0743 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.05205281801 + 0.04831455911i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.05205281801 + 0.04831455911i\) |
\(L(1)\) |
\(\approx\) |
\(0.5036563710 - 0.2657781071i\) |
\(L(1)\) |
\(\approx\) |
\(0.5036563710 - 0.2657781071i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.549 - 0.835i)T \) |
| 5 | \( 1 + (-0.727 - 0.686i)T \) |
| 7 | \( 1 + (0.116 - 0.993i)T \) |
| 11 | \( 1 + (0.957 + 0.286i)T \) |
| 17 | \( 1 + (-0.939 + 0.342i)T \) |
| 19 | \( 1 + (-0.342 + 0.939i)T \) |
| 23 | \( 1 + (-0.993 + 0.116i)T \) |
| 29 | \( 1 + (-0.893 - 0.448i)T \) |
| 31 | \( 1 + (0.802 - 0.597i)T \) |
| 37 | \( 1 + (-0.642 + 0.766i)T \) |
| 41 | \( 1 + (0.549 - 0.835i)T \) |
| 43 | \( 1 + (-0.973 + 0.230i)T \) |
| 47 | \( 1 + (-0.802 - 0.597i)T \) |
| 53 | \( 1 + (0.5 - 0.866i)T \) |
| 59 | \( 1 + (-0.957 + 0.286i)T \) |
| 61 | \( 1 + (0.396 + 0.918i)T \) |
| 67 | \( 1 + (-0.448 - 0.893i)T \) |
| 71 | \( 1 + (0.984 + 0.173i)T \) |
| 73 | \( 1 + (-0.984 + 0.173i)T \) |
| 79 | \( 1 + (-0.835 + 0.549i)T \) |
| 83 | \( 1 + (-0.549 - 0.835i)T \) |
| 89 | \( 1 + (0.984 - 0.173i)T \) |
| 97 | \( 1 + (-0.727 + 0.686i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.71582494802515974026840576617, −20.15894882478100865251857277759, −19.55156877914132235166407452765, −18.9374172688796000844879532599, −18.105095466732332298946674369323, −17.63348994929229205207692435789, −16.518717001318757778678409600808, −15.74936504082069481713200258568, −15.24222276575982983920527442619, −14.49735167654159342476172052394, −13.81200854867663105293819760854, −12.59219063738267443708086630034, −11.507988575686474198123247495636, −11.08010754437670747814920947789, −9.94157228507991528456443278747, −8.9766724332141703751867004262, −8.5183539884280437172629648044, −7.50855312341907555169528239969, −6.64642865848303001459074975893, −6.12026500009444823664623913846, −4.93898954787326902636611431234, −4.07858076668493490655687420371, −2.81162442134658608273514505479, −1.69107424113091670759649178468, −0.03855814745008465990555668740,
1.22868795316472652546065097231, 2.01626065187981670646456811525, 3.67654760277791090460643179036, 3.99011676139415226313631246459, 4.81312213123925886730318482354, 6.39660236354069873108378549960, 7.409472949815781278000500457918, 8.124806175135320055447954979357, 8.837123621037714411933729808275, 9.79520984879455803688480642467, 10.48496549092977183468314132383, 11.5470143293660581300089164128, 11.89428738552223653350313217668, 12.922340820545108941028120736422, 13.53066280222915616361135723377, 14.54281493054377036953008302643, 15.61965121426561498083661123086, 16.62706604879509893649291490048, 17.017724182527330280422999061615, 17.75066599560881993405427581192, 18.832607576940876553783014645385, 19.58784123915464936908221988393, 20.0829045880507063195888096457, 20.64205125737251417664856769916, 21.45771456537997222185812089901