L(s) = 1 | + (−0.549 + 0.835i)2-s + (−0.396 − 0.918i)4-s + (−0.727 + 0.686i)5-s + (0.116 + 0.993i)7-s + (0.984 + 0.173i)8-s + (−0.173 − 0.984i)10-s + (0.957 − 0.286i)11-s + (−0.893 − 0.448i)14-s + (−0.686 + 0.727i)16-s + (−0.939 − 0.342i)17-s + (−0.342 − 0.939i)19-s + (0.918 + 0.396i)20-s + (−0.286 + 0.957i)22-s + (−0.993 − 0.116i)23-s + (0.0581 − 0.998i)25-s + ⋯ |
L(s) = 1 | + (−0.549 + 0.835i)2-s + (−0.396 − 0.918i)4-s + (−0.727 + 0.686i)5-s + (0.116 + 0.993i)7-s + (0.984 + 0.173i)8-s + (−0.173 − 0.984i)10-s + (0.957 − 0.286i)11-s + (−0.893 − 0.448i)14-s + (−0.686 + 0.727i)16-s + (−0.939 − 0.342i)17-s + (−0.342 − 0.939i)19-s + (0.918 + 0.396i)20-s + (−0.286 + 0.957i)22-s + (−0.993 − 0.116i)23-s + (0.0581 − 0.998i)25-s + ⋯ |
Λ(s)=(=(1053s/2ΓR(s)L(s)(0.0743−0.997i)Λ(1−s)
Λ(s)=(=(1053s/2ΓR(s)L(s)(0.0743−0.997i)Λ(1−s)
Degree: |
1 |
Conductor: |
1053
= 34⋅13
|
Sign: |
0.0743−0.997i
|
Analytic conductor: |
4.89011 |
Root analytic conductor: |
4.89011 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1053(437,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1053, (0: ), 0.0743−0.997i)
|
Particular Values
L(21) |
≈ |
0.05205281801−0.04831455911i |
L(21) |
≈ |
0.05205281801−0.04831455911i |
L(1) |
≈ |
0.5036563710+0.2657781071i |
L(1) |
≈ |
0.5036563710+0.2657781071i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 13 | 1 |
good | 2 | 1+(−0.549+0.835i)T |
| 5 | 1+(−0.727+0.686i)T |
| 7 | 1+(0.116+0.993i)T |
| 11 | 1+(0.957−0.286i)T |
| 17 | 1+(−0.939−0.342i)T |
| 19 | 1+(−0.342−0.939i)T |
| 23 | 1+(−0.993−0.116i)T |
| 29 | 1+(−0.893+0.448i)T |
| 31 | 1+(0.802+0.597i)T |
| 37 | 1+(−0.642−0.766i)T |
| 41 | 1+(0.549+0.835i)T |
| 43 | 1+(−0.973−0.230i)T |
| 47 | 1+(−0.802+0.597i)T |
| 53 | 1+(0.5+0.866i)T |
| 59 | 1+(−0.957−0.286i)T |
| 61 | 1+(0.396−0.918i)T |
| 67 | 1+(−0.448+0.893i)T |
| 71 | 1+(0.984−0.173i)T |
| 73 | 1+(−0.984−0.173i)T |
| 79 | 1+(−0.835−0.549i)T |
| 83 | 1+(−0.549+0.835i)T |
| 89 | 1+(0.984+0.173i)T |
| 97 | 1+(−0.727−0.686i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.45771456537997222185812089901, −20.64205125737251417664856769916, −20.0829045880507063195888096457, −19.58784123915464936908221988393, −18.832607576940876553783014645385, −17.75066599560881993405427581192, −17.017724182527330280422999061615, −16.62706604879509893649291490048, −15.61965121426561498083661123086, −14.54281493054377036953008302643, −13.53066280222915616361135723377, −12.922340820545108941028120736422, −11.89428738552223653350313217668, −11.5470143293660581300089164128, −10.48496549092977183468314132383, −9.79520984879455803688480642467, −8.837123621037714411933729808275, −8.124806175135320055447954979357, −7.409472949815781278000500457918, −6.39660236354069873108378549960, −4.81312213123925886730318482354, −3.99011676139415226313631246459, −3.67654760277791090460643179036, −2.01626065187981670646456811525, −1.22868795316472652546065097231,
0.03855814745008465990555668740, 1.69107424113091670759649178468, 2.81162442134658608273514505479, 4.07858076668493490655687420371, 4.93898954787326902636611431234, 6.12026500009444823664623913846, 6.64642865848303001459074975893, 7.50855312341907555169528239969, 8.5183539884280437172629648044, 8.9766724332141703751867004262, 9.94157228507991528456443278747, 11.08010754437670747814920947789, 11.507988575686474198123247495636, 12.59219063738267443708086630034, 13.81200854867663105293819760854, 14.49735167654159342476172052394, 15.24222276575982983920527442619, 15.74936504082069481713200258568, 16.518717001318757778678409600808, 17.63348994929229205207692435789, 18.105095466732332298946674369323, 18.9374172688796000844879532599, 19.55156877914132235166407452765, 20.15894882478100865251857277759, 21.71582494802515974026840576617