L(s) = 1 | + (−0.549 + 0.835i)2-s + (−0.396 − 0.918i)4-s + (−0.727 + 0.686i)5-s + (0.116 + 0.993i)7-s + (0.984 + 0.173i)8-s + (−0.173 − 0.984i)10-s + (0.957 − 0.286i)11-s + (−0.893 − 0.448i)14-s + (−0.686 + 0.727i)16-s + (−0.939 − 0.342i)17-s + (−0.342 − 0.939i)19-s + (0.918 + 0.396i)20-s + (−0.286 + 0.957i)22-s + (−0.993 − 0.116i)23-s + (0.0581 − 0.998i)25-s + ⋯ |
L(s) = 1 | + (−0.549 + 0.835i)2-s + (−0.396 − 0.918i)4-s + (−0.727 + 0.686i)5-s + (0.116 + 0.993i)7-s + (0.984 + 0.173i)8-s + (−0.173 − 0.984i)10-s + (0.957 − 0.286i)11-s + (−0.893 − 0.448i)14-s + (−0.686 + 0.727i)16-s + (−0.939 − 0.342i)17-s + (−0.342 − 0.939i)19-s + (0.918 + 0.396i)20-s + (−0.286 + 0.957i)22-s + (−0.993 − 0.116i)23-s + (0.0581 − 0.998i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0743 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0743 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.05205281801 - 0.04831455911i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.05205281801 - 0.04831455911i\) |
\(L(1)\) |
\(\approx\) |
\(0.5036563710 + 0.2657781071i\) |
\(L(1)\) |
\(\approx\) |
\(0.5036563710 + 0.2657781071i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.549 + 0.835i)T \) |
| 5 | \( 1 + (-0.727 + 0.686i)T \) |
| 7 | \( 1 + (0.116 + 0.993i)T \) |
| 11 | \( 1 + (0.957 - 0.286i)T \) |
| 17 | \( 1 + (-0.939 - 0.342i)T \) |
| 19 | \( 1 + (-0.342 - 0.939i)T \) |
| 23 | \( 1 + (-0.993 - 0.116i)T \) |
| 29 | \( 1 + (-0.893 + 0.448i)T \) |
| 31 | \( 1 + (0.802 + 0.597i)T \) |
| 37 | \( 1 + (-0.642 - 0.766i)T \) |
| 41 | \( 1 + (0.549 + 0.835i)T \) |
| 43 | \( 1 + (-0.973 - 0.230i)T \) |
| 47 | \( 1 + (-0.802 + 0.597i)T \) |
| 53 | \( 1 + (0.5 + 0.866i)T \) |
| 59 | \( 1 + (-0.957 - 0.286i)T \) |
| 61 | \( 1 + (0.396 - 0.918i)T \) |
| 67 | \( 1 + (-0.448 + 0.893i)T \) |
| 71 | \( 1 + (0.984 - 0.173i)T \) |
| 73 | \( 1 + (-0.984 - 0.173i)T \) |
| 79 | \( 1 + (-0.835 - 0.549i)T \) |
| 83 | \( 1 + (-0.549 + 0.835i)T \) |
| 89 | \( 1 + (0.984 + 0.173i)T \) |
| 97 | \( 1 + (-0.727 - 0.686i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.45771456537997222185812089901, −20.64205125737251417664856769916, −20.0829045880507063195888096457, −19.58784123915464936908221988393, −18.832607576940876553783014645385, −17.75066599560881993405427581192, −17.017724182527330280422999061615, −16.62706604879509893649291490048, −15.61965121426561498083661123086, −14.54281493054377036953008302643, −13.53066280222915616361135723377, −12.922340820545108941028120736422, −11.89428738552223653350313217668, −11.5470143293660581300089164128, −10.48496549092977183468314132383, −9.79520984879455803688480642467, −8.837123621037714411933729808275, −8.124806175135320055447954979357, −7.409472949815781278000500457918, −6.39660236354069873108378549960, −4.81312213123925886730318482354, −3.99011676139415226313631246459, −3.67654760277791090460643179036, −2.01626065187981670646456811525, −1.22868795316472652546065097231,
0.03855814745008465990555668740, 1.69107424113091670759649178468, 2.81162442134658608273514505479, 4.07858076668493490655687420371, 4.93898954787326902636611431234, 6.12026500009444823664623913846, 6.64642865848303001459074975893, 7.50855312341907555169528239969, 8.5183539884280437172629648044, 8.9766724332141703751867004262, 9.94157228507991528456443278747, 11.08010754437670747814920947789, 11.507988575686474198123247495636, 12.59219063738267443708086630034, 13.81200854867663105293819760854, 14.49735167654159342476172052394, 15.24222276575982983920527442619, 15.74936504082069481713200258568, 16.518717001318757778678409600808, 17.63348994929229205207692435789, 18.105095466732332298946674369323, 18.9374172688796000844879532599, 19.55156877914132235166407452765, 20.15894882478100865251857277759, 21.71582494802515974026840576617