L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.866 + 0.5i)3-s + (−0.5 + 0.866i)4-s + (−0.866 + 0.5i)5-s − i·6-s + 8-s + (0.5 + 0.866i)9-s + (0.866 + 0.5i)10-s + (−0.866 + 0.5i)12-s + 13-s − 15-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)18-s + (0.5 + 0.866i)19-s − i·20-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.866 + 0.5i)3-s + (−0.5 + 0.866i)4-s + (−0.866 + 0.5i)5-s − i·6-s + 8-s + (0.5 + 0.866i)9-s + (0.866 + 0.5i)10-s + (−0.866 + 0.5i)12-s + 13-s − 15-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)18-s + (0.5 + 0.866i)19-s − i·20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1309 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.710 + 0.704i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1309 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.710 + 0.704i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.245997484 + 0.5130016881i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.245997484 + 0.5130016881i\) |
\(L(1)\) |
\(\approx\) |
\(0.9949595285 + 0.03918033862i\) |
\(L(1)\) |
\(\approx\) |
\(0.9949595285 + 0.03918033862i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 + (0.866 + 0.5i)T \) |
| 5 | \( 1 + (-0.866 + 0.5i)T \) |
| 13 | \( 1 + T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.866 + 0.5i)T \) |
| 29 | \( 1 - iT \) |
| 31 | \( 1 + (0.866 + 0.5i)T \) |
| 37 | \( 1 + (0.866 - 0.5i)T \) |
| 41 | \( 1 - iT \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + (0.5 + 0.866i)T \) |
| 53 | \( 1 + (0.5 - 0.866i)T \) |
| 59 | \( 1 + (-0.5 + 0.866i)T \) |
| 61 | \( 1 + (-0.866 + 0.5i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + iT \) |
| 73 | \( 1 + (-0.866 - 0.5i)T \) |
| 79 | \( 1 + (0.866 - 0.5i)T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 - iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.34157752584007048698321145532, −20.0905770676599834572411781831, −19.284160422958225555732124605140, −18.47361718823038546191794762535, −18.079030985921333683252261159, −16.972781795590992326075208547693, −16.13461658379959747363627149874, −15.54703232474263706834198744642, −14.95201830865988972473598630565, −13.98329844865826860936475493663, −13.41389376477924514422881807293, −12.56976965113252878624871868995, −11.582959108175345441245328094791, −10.61763792625873172725517526317, −9.480099164365555600716442779663, −8.88364211672084488904525893831, −8.16567022155980972588310665099, −7.65507152360728498269819029999, −6.76708589226365395758812725889, −5.98411734824089349420358590857, −4.72306692267163076534228448089, −4.011547321723262371543463648515, −2.91820007256507304987487129001, −1.52793849744011152077151398352, −0.680040230215921529737736224798,
1.148897214307540121707805157539, 2.320439034634394733797898262018, 3.13285061051091237828051303438, 3.92383435333345850129932770364, 4.34079105723743800052142221926, 5.849837203554390057874341595891, 7.28733817688936766895692472375, 7.903912872647843152834352303397, 8.511638296449414678862991886349, 9.37287066947878562633153814548, 10.22051211025839405130258677667, 10.796037916194037454177916895377, 11.651443447353071193693246091352, 12.35497639083560095312493612684, 13.47578650575160234918731953110, 13.9998234851530708067174745784, 14.91244849215244952352488666504, 16.02553366457259963339756561615, 16.10503066338755438588210980231, 17.47839920483180233038305485121, 18.346773004402377509832325638945, 18.98918512083174150489343791598, 19.52752839737884019395594744987, 20.280770159529092319408478395840, 20.87983017670895400756043344744