Properties

Label 1-1309-1309.395-r0-0-0
Degree 11
Conductor 13091309
Sign 0.7100.704i0.710 - 0.704i
Analytic cond. 6.078976.07897
Root an. cond. 6.078976.07897
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 0.866i)2-s + (0.866 − 0.5i)3-s + (−0.5 − 0.866i)4-s + (−0.866 − 0.5i)5-s + i·6-s + 8-s + (0.5 − 0.866i)9-s + (0.866 − 0.5i)10-s + (−0.866 − 0.5i)12-s + 13-s − 15-s + (−0.5 + 0.866i)16-s + (0.5 + 0.866i)18-s + (0.5 − 0.866i)19-s + i·20-s + ⋯
L(s)  = 1  + (−0.5 + 0.866i)2-s + (0.866 − 0.5i)3-s + (−0.5 − 0.866i)4-s + (−0.866 − 0.5i)5-s + i·6-s + 8-s + (0.5 − 0.866i)9-s + (0.866 − 0.5i)10-s + (−0.866 − 0.5i)12-s + 13-s − 15-s + (−0.5 + 0.866i)16-s + (0.5 + 0.866i)18-s + (0.5 − 0.866i)19-s + i·20-s + ⋯

Functional equation

Λ(s)=(1309s/2ΓR(s)L(s)=((0.7100.704i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1309 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.710 - 0.704i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(1309s/2ΓR(s)L(s)=((0.7100.704i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1309 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.710 - 0.704i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 13091309    =    711177 \cdot 11 \cdot 17
Sign: 0.7100.704i0.710 - 0.704i
Analytic conductor: 6.078976.07897
Root analytic conductor: 6.078976.07897
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ1309(395,)\chi_{1309} (395, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 1309, (0: ), 0.7100.704i)(1,\ 1309,\ (0:\ ),\ 0.710 - 0.704i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.2459974840.5130016881i1.245997484 - 0.5130016881i
L(12)L(\frac12) \approx 1.2459974840.5130016881i1.245997484 - 0.5130016881i
L(1)L(1) \approx 0.99495952850.03918033862i0.9949595285 - 0.03918033862i
L(1)L(1) \approx 0.99495952850.03918033862i0.9949595285 - 0.03918033862i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad7 1 1
11 1 1
17 1 1
good2 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
3 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
5 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
13 1+T 1 + T
19 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
23 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
29 1+iT 1 + iT
31 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
37 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
41 1+iT 1 + iT
43 1+T 1 + T
47 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
53 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
59 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
61 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
67 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
71 1iT 1 - iT
73 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
79 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
83 1T 1 - T
89 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
97 1+iT 1 + iT
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−20.87983017670895400756043344744, −20.280770159529092319408478395840, −19.52752839737884019395594744987, −18.98918512083174150489343791598, −18.346773004402377509832325638945, −17.47839920483180233038305485121, −16.10503066338755438588210980231, −16.02553366457259963339756561615, −14.91244849215244952352488666504, −13.9998234851530708067174745784, −13.47578650575160234918731953110, −12.35497639083560095312493612684, −11.651443447353071193693246091352, −10.796037916194037454177916895377, −10.22051211025839405130258677667, −9.37287066947878562633153814548, −8.511638296449414678862991886349, −7.903912872647843152834352303397, −7.28733817688936766895692472375, −5.849837203554390057874341595891, −4.34079105723743800052142221926, −3.92383435333345850129932770364, −3.13285061051091237828051303438, −2.320439034634394733797898262018, −1.148897214307540121707805157539, 0.680040230215921529737736224798, 1.52793849744011152077151398352, 2.91820007256507304987487129001, 4.011547321723262371543463648515, 4.72306692267163076534228448089, 5.98411734824089349420358590857, 6.76708589226365395758812725889, 7.65507152360728498269819029999, 8.16567022155980972588310665099, 8.88364211672084488904525893831, 9.480099164365555600716442779663, 10.61763792625873172725517526317, 11.582959108175345441245328094791, 12.56976965113252878624871868995, 13.41389376477924514422881807293, 13.98329844865826860936475493663, 14.95201830865988972473598630565, 15.54703232474263706834198744642, 16.13461658379959747363627149874, 16.972781795590992326075208547693, 18.079030985921333683252261159, 18.47361718823038546191794762535, 19.284160422958225555732124605140, 20.0905770676599834572411781831, 20.34157752584007048698321145532

Graph of the ZZ-function along the critical line