L(s) = 1 | + (−0.951 + 0.309i)2-s + (−0.809 − 0.587i)3-s + (0.809 − 0.587i)4-s + (0.951 + 0.309i)5-s + (0.951 + 0.309i)6-s + (0.587 + 0.809i)7-s + (−0.587 + 0.809i)8-s + (0.309 + 0.951i)9-s − 10-s − 12-s + (−0.809 − 0.587i)14-s + (−0.587 − 0.809i)15-s + (0.309 − 0.951i)16-s + (−0.309 + 0.951i)17-s + (−0.587 − 0.809i)18-s + (0.587 − 0.809i)19-s + ⋯ |
L(s) = 1 | + (−0.951 + 0.309i)2-s + (−0.809 − 0.587i)3-s + (0.809 − 0.587i)4-s + (0.951 + 0.309i)5-s + (0.951 + 0.309i)6-s + (0.587 + 0.809i)7-s + (−0.587 + 0.809i)8-s + (0.309 + 0.951i)9-s − 10-s − 12-s + (−0.809 − 0.587i)14-s + (−0.587 − 0.809i)15-s + (0.309 − 0.951i)16-s + (−0.309 + 0.951i)17-s + (−0.587 − 0.809i)18-s + (0.587 − 0.809i)19-s + ⋯ |
Λ(s)=(=(143s/2ΓR(s+1)L(s)(−0.0439+0.999i)Λ(1−s)
Λ(s)=(=(143s/2ΓR(s+1)L(s)(−0.0439+0.999i)Λ(1−s)
Degree: |
1 |
Conductor: |
143
= 11⋅13
|
Sign: |
−0.0439+0.999i
|
Analytic conductor: |
15.3674 |
Root analytic conductor: |
15.3674 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ143(125,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 143, (1: ), −0.0439+0.999i)
|
Particular Values
L(21) |
≈ |
0.6030281898+0.6301198051i |
L(21) |
≈ |
0.6030281898+0.6301198051i |
L(1) |
≈ |
0.6554356846+0.1655945132i |
L(1) |
≈ |
0.6554356846+0.1655945132i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1 |
| 13 | 1 |
good | 2 | 1+(−0.951+0.309i)T |
| 3 | 1+(−0.809−0.587i)T |
| 5 | 1+(0.951+0.309i)T |
| 7 | 1+(0.587+0.809i)T |
| 17 | 1+(−0.309+0.951i)T |
| 19 | 1+(0.587−0.809i)T |
| 23 | 1−T |
| 29 | 1+(−0.809+0.587i)T |
| 31 | 1+(−0.951+0.309i)T |
| 37 | 1+(0.587+0.809i)T |
| 41 | 1+(0.587−0.809i)T |
| 43 | 1−T |
| 47 | 1+(−0.587+0.809i)T |
| 53 | 1+(0.309+0.951i)T |
| 59 | 1+(0.587+0.809i)T |
| 61 | 1+(0.309−0.951i)T |
| 67 | 1+iT |
| 71 | 1+(0.951+0.309i)T |
| 73 | 1+(0.587+0.809i)T |
| 79 | 1+(0.309+0.951i)T |
| 83 | 1+(0.951+0.309i)T |
| 89 | 1−iT |
| 97 | 1+(−0.951+0.309i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−27.84193416148050731957131940173, −26.92183139273932931815241143649, −26.21828472349966417470687676238, −24.93720795394404242567430509958, −24.04810297268173558054166560471, −22.63463478364822113060668793073, −21.58004338063174235180256826412, −20.741402713383103986853752726781, −20.11200182809155796757345906140, −18.215797432460128360385168884337, −17.85676467151338856011511595824, −16.69400284096234057804791746015, −16.2869469020096097485179090675, −14.69110202811750068960356310239, −13.26798921757554189021617496071, −11.9150284450274839523721402057, −11.005278772229573161761037669757, −10.00135162265947356184183161867, −9.35422854504853018049441863952, −7.819115491820514524363244408782, −6.52054200166846218822940076422, −5.28316692419045598841060918684, −3.81249755807397695066653404051, −1.86874005978836914630600586010, −0.52524816686750850569916208444,
1.42435370015518509842090149936, 2.3525021082629669655646390199, 5.25632971092834227883177459388, 6.01242956789348949217307105564, 7.04504011751636420741448999450, 8.2914378064237194636941979519, 9.49367370958892972457938115908, 10.69221026612034960783329403824, 11.4868408968552190975414198468, 12.74420324944730926050694834290, 14.144501670333467695094774054907, 15.28676418357092309206707512560, 16.52325648513174407080852451117, 17.53315038198437075884076247908, 18.07910324648910341007414734351, 18.80597974346246007560672828622, 20.08973235260731701429235613456, 21.51817725853659004687775594858, 22.227611475590799127771387591425, 23.85054706098660669300310855370, 24.40573190420205976679787818403, 25.36901458329472294942833927853, 26.20592293350886365181892161978, 27.57355481909862308674415442677, 28.33508244442482684683268133152