Properties

Label 1-143-143.125-r1-0-0
Degree 11
Conductor 143143
Sign 0.0439+0.999i-0.0439 + 0.999i
Analytic cond. 15.367415.3674
Root an. cond. 15.367415.3674
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.951 + 0.309i)2-s + (−0.809 − 0.587i)3-s + (0.809 − 0.587i)4-s + (0.951 + 0.309i)5-s + (0.951 + 0.309i)6-s + (0.587 + 0.809i)7-s + (−0.587 + 0.809i)8-s + (0.309 + 0.951i)9-s − 10-s − 12-s + (−0.809 − 0.587i)14-s + (−0.587 − 0.809i)15-s + (0.309 − 0.951i)16-s + (−0.309 + 0.951i)17-s + (−0.587 − 0.809i)18-s + (0.587 − 0.809i)19-s + ⋯
L(s)  = 1  + (−0.951 + 0.309i)2-s + (−0.809 − 0.587i)3-s + (0.809 − 0.587i)4-s + (0.951 + 0.309i)5-s + (0.951 + 0.309i)6-s + (0.587 + 0.809i)7-s + (−0.587 + 0.809i)8-s + (0.309 + 0.951i)9-s − 10-s − 12-s + (−0.809 − 0.587i)14-s + (−0.587 − 0.809i)15-s + (0.309 − 0.951i)16-s + (−0.309 + 0.951i)17-s + (−0.587 − 0.809i)18-s + (0.587 − 0.809i)19-s + ⋯

Functional equation

Λ(s)=(143s/2ΓR(s+1)L(s)=((0.0439+0.999i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 143 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.0439 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(143s/2ΓR(s+1)L(s)=((0.0439+0.999i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 143 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.0439 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 143143    =    111311 \cdot 13
Sign: 0.0439+0.999i-0.0439 + 0.999i
Analytic conductor: 15.367415.3674
Root analytic conductor: 15.367415.3674
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ143(125,)\chi_{143} (125, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 143, (1: ), 0.0439+0.999i)(1,\ 143,\ (1:\ ),\ -0.0439 + 0.999i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.6030281898+0.6301198051i0.6030281898 + 0.6301198051i
L(12)L(\frac12) \approx 0.6030281898+0.6301198051i0.6030281898 + 0.6301198051i
L(1)L(1) \approx 0.6554356846+0.1655945132i0.6554356846 + 0.1655945132i
L(1)L(1) \approx 0.6554356846+0.1655945132i0.6554356846 + 0.1655945132i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad11 1 1
13 1 1
good2 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
3 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
5 1+(0.951+0.309i)T 1 + (0.951 + 0.309i)T
7 1+(0.587+0.809i)T 1 + (0.587 + 0.809i)T
17 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
19 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
23 1T 1 - T
29 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
31 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
37 1+(0.587+0.809i)T 1 + (0.587 + 0.809i)T
41 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
43 1T 1 - T
47 1+(0.587+0.809i)T 1 + (-0.587 + 0.809i)T
53 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
59 1+(0.587+0.809i)T 1 + (0.587 + 0.809i)T
61 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
67 1+iT 1 + iT
71 1+(0.951+0.309i)T 1 + (0.951 + 0.309i)T
73 1+(0.587+0.809i)T 1 + (0.587 + 0.809i)T
79 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
83 1+(0.951+0.309i)T 1 + (0.951 + 0.309i)T
89 1iT 1 - iT
97 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−27.84193416148050731957131940173, −26.92183139273932931815241143649, −26.21828472349966417470687676238, −24.93720795394404242567430509958, −24.04810297268173558054166560471, −22.63463478364822113060668793073, −21.58004338063174235180256826412, −20.741402713383103986853752726781, −20.11200182809155796757345906140, −18.215797432460128360385168884337, −17.85676467151338856011511595824, −16.69400284096234057804791746015, −16.2869469020096097485179090675, −14.69110202811750068960356310239, −13.26798921757554189021617496071, −11.9150284450274839523721402057, −11.005278772229573161761037669757, −10.00135162265947356184183161867, −9.35422854504853018049441863952, −7.819115491820514524363244408782, −6.52054200166846218822940076422, −5.28316692419045598841060918684, −3.81249755807397695066653404051, −1.86874005978836914630600586010, −0.52524816686750850569916208444, 1.42435370015518509842090149936, 2.3525021082629669655646390199, 5.25632971092834227883177459388, 6.01242956789348949217307105564, 7.04504011751636420741448999450, 8.2914378064237194636941979519, 9.49367370958892972457938115908, 10.69221026612034960783329403824, 11.4868408968552190975414198468, 12.74420324944730926050694834290, 14.144501670333467695094774054907, 15.28676418357092309206707512560, 16.52325648513174407080852451117, 17.53315038198437075884076247908, 18.07910324648910341007414734351, 18.80597974346246007560672828622, 20.08973235260731701429235613456, 21.51817725853659004687775594858, 22.227611475590799127771387591425, 23.85054706098660669300310855370, 24.40573190420205976679787818403, 25.36901458329472294942833927853, 26.20592293350886365181892161978, 27.57355481909862308674415442677, 28.33508244442482684683268133152

Graph of the ZZ-function along the critical line