L(s) = 1 | + (0.309 − 0.951i)2-s + (−0.809 + 0.587i)3-s + (−0.809 − 0.587i)4-s + (−0.309 − 0.951i)5-s + (0.309 + 0.951i)6-s + (−0.809 − 0.587i)7-s + (−0.809 + 0.587i)8-s + (0.309 − 0.951i)9-s − 10-s + 12-s + (−0.809 + 0.587i)14-s + (0.809 + 0.587i)15-s + (0.309 + 0.951i)16-s + (−0.309 − 0.951i)17-s + (−0.809 − 0.587i)18-s + (−0.809 + 0.587i)19-s + ⋯ |
L(s) = 1 | + (0.309 − 0.951i)2-s + (−0.809 + 0.587i)3-s + (−0.809 − 0.587i)4-s + (−0.309 − 0.951i)5-s + (0.309 + 0.951i)6-s + (−0.809 − 0.587i)7-s + (−0.809 + 0.587i)8-s + (0.309 − 0.951i)9-s − 10-s + 12-s + (−0.809 + 0.587i)14-s + (0.809 + 0.587i)15-s + (0.309 + 0.951i)16-s + (−0.309 − 0.951i)17-s + (−0.809 − 0.587i)18-s + (−0.809 + 0.587i)19-s + ⋯ |
Λ(s)=(=(143s/2ΓR(s+1)L(s)(0.530+0.847i)Λ(1−s)
Λ(s)=(=(143s/2ΓR(s+1)L(s)(0.530+0.847i)Λ(1−s)
Degree: |
1 |
Conductor: |
143
= 11⋅13
|
Sign: |
0.530+0.847i
|
Analytic conductor: |
15.3674 |
Root analytic conductor: |
15.3674 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ143(129,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 143, (1: ), 0.530+0.847i)
|
Particular Values
L(21) |
≈ |
0.1306830444+0.07241491096i |
L(21) |
≈ |
0.1306830444+0.07241491096i |
L(1) |
≈ |
0.5237271712−0.3274647246i |
L(1) |
≈ |
0.5237271712−0.3274647246i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1 |
| 13 | 1 |
good | 2 | 1+(0.309−0.951i)T |
| 3 | 1+(−0.809+0.587i)T |
| 5 | 1+(−0.309−0.951i)T |
| 7 | 1+(−0.809−0.587i)T |
| 17 | 1+(−0.309−0.951i)T |
| 19 | 1+(−0.809+0.587i)T |
| 23 | 1+T |
| 29 | 1+(0.809+0.587i)T |
| 31 | 1+(−0.309+0.951i)T |
| 37 | 1+(0.809+0.587i)T |
| 41 | 1+(−0.809+0.587i)T |
| 43 | 1−T |
| 47 | 1+(0.809−0.587i)T |
| 53 | 1+(0.309−0.951i)T |
| 59 | 1+(0.809+0.587i)T |
| 61 | 1+(−0.309−0.951i)T |
| 67 | 1−T |
| 71 | 1+(−0.309−0.951i)T |
| 73 | 1+(−0.809−0.587i)T |
| 79 | 1+(−0.309+0.951i)T |
| 83 | 1+(0.309+0.951i)T |
| 89 | 1−T |
| 97 | 1+(−0.309+0.951i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−27.828492641589487760955978901727, −26.72795186314646307759324441607, −25.72634595924408506982372308637, −24.960263105395905931379276370755, −23.723279946660407199746327552181, −23.13219984400068934097517624054, −22.179865932771270880761337449378, −21.65442128226436022990957941934, −19.32371454754670997414703215844, −18.73982021425492382075586739512, −17.694177896349616896399510953155, −16.80117787882228889515337923533, −15.62642769350255460597827793745, −14.91138969318552023439880305488, −13.452308703834402920300134382996, −12.67653967601210367771442117105, −11.54271755164392064680586214208, −10.25405639936239077136833356139, −8.68284756282232328026783077793, −7.36758127948836475060794799855, −6.50371291602102460787548891705, −5.80076757216193416826483519936, −4.2364227758913307857773322498, −2.668892565654190650330968863821, −0.069266447936949241847383257418,
1.08974519970853279256000106276, 3.28836518476046724293561602272, 4.399469797144225069514464767592, 5.23652248710850141217067638605, 6.661157134159330587167645655, 8.719045930616089289606247006197, 9.70756786774637167839529791935, 10.62725655636466641968456050888, 11.74429191134332930166633611527, 12.604452600402011484759664144, 13.48498496538353704860501769874, 15.035352597544263428501620218291, 16.24040977988834628165935118863, 17.00469354882354760034909716111, 18.24145580805315622297628037458, 19.52696724204820574318101988015, 20.37531831084231045874727070359, 21.203545441213311147727726626703, 22.22331392192481730806750634386, 23.260372583816819467418026915023, 23.61196873071069017764837073953, 25.18795042420261010172104260395, 26.94344157914545745304905945472, 27.26768120899851875982255795862, 28.52322020346310148050202709775