Properties

Label 1-1480-1480.1109-r0-0-0
Degree $1$
Conductor $1480$
Sign $1$
Analytic cond. $6.87309$
Root an. cond. $6.87309$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s + 9-s − 11-s − 13-s + 17-s + 19-s − 21-s + 23-s + 27-s + 29-s − 31-s − 33-s − 39-s + 41-s − 43-s − 47-s + 49-s + 51-s + 53-s + 57-s + 59-s + 61-s − 63-s + 67-s + 69-s + 71-s + ⋯
L(s)  = 1  + 3-s − 7-s + 9-s − 11-s − 13-s + 17-s + 19-s − 21-s + 23-s + 27-s + 29-s − 31-s − 33-s − 39-s + 41-s − 43-s − 47-s + 49-s + 51-s + 53-s + 57-s + 59-s + 61-s − 63-s + 67-s + 69-s + 71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(1480\)    =    \(2^{3} \cdot 5 \cdot 37\)
Sign: $1$
Analytic conductor: \(6.87309\)
Root analytic conductor: \(6.87309\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{1480} (1109, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 1480,\ (0:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.968490656\)
\(L(\frac12)\) \(\approx\) \(1.968490656\)
\(L(1)\) \(\approx\) \(1.348163295\)
\(L(1)\) \(\approx\) \(1.348163295\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
37 \( 1 \)
good3 \( 1 + T \)
7 \( 1 - T \)
11 \( 1 - T \)
13 \( 1 - T \)
17 \( 1 + T \)
19 \( 1 + T \)
23 \( 1 + T \)
29 \( 1 + T \)
31 \( 1 - T \)
41 \( 1 + T \)
43 \( 1 - T \)
47 \( 1 - T \)
53 \( 1 + T \)
59 \( 1 + T \)
61 \( 1 + T \)
67 \( 1 + T \)
71 \( 1 + T \)
73 \( 1 - T \)
79 \( 1 - T \)
83 \( 1 + T \)
89 \( 1 - T \)
97 \( 1 + T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−20.597044878934877592344022715104, −19.82432264340175996615369024496, −19.27242929318491127413325967534, −18.596992281382950001199286519007, −17.86723211403599037252990429206, −16.65127924649530894434576803646, −16.102181655726558264935460066103, −15.34766332592801934993499208118, −14.58889106351705004008504604803, −13.89046088132977626793181711089, −12.93408911964553979815099178244, −12.66899382534337587483868959446, −11.57752933663650910841670425152, −10.24005501312088998266006188816, −9.927699293484388494676159659395, −9.146022499354062083976879229467, −8.21059444698359270110404980695, −7.39452902264587061698817397145, −6.88710095229229850050824509391, −5.56335888627716199056787440663, −4.82892374697454440439774692989, −3.57419746510904027057169045618, −2.992709775420941766491946683463, −2.27205810753055573815973483819, −0.88221143063316516468833070542, 0.88221143063316516468833070542, 2.27205810753055573815973483819, 2.992709775420941766491946683463, 3.57419746510904027057169045618, 4.82892374697454440439774692989, 5.56335888627716199056787440663, 6.88710095229229850050824509391, 7.39452902264587061698817397145, 8.21059444698359270110404980695, 9.146022499354062083976879229467, 9.927699293484388494676159659395, 10.24005501312088998266006188816, 11.57752933663650910841670425152, 12.66899382534337587483868959446, 12.93408911964553979815099178244, 13.89046088132977626793181711089, 14.58889106351705004008504604803, 15.34766332592801934993499208118, 16.102181655726558264935460066103, 16.65127924649530894434576803646, 17.86723211403599037252990429206, 18.596992281382950001199286519007, 19.27242929318491127413325967534, 19.82432264340175996615369024496, 20.597044878934877592344022715104

Graph of the $Z$-function along the critical line