Properties

Label 1-189-189.58-r0-0-0
Degree 11
Conductor 189189
Sign 0.4530.891i0.453 - 0.891i
Analytic cond. 0.8777120.877712
Root an. cond. 0.8777120.877712
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.173 − 0.984i)2-s + (−0.939 − 0.342i)4-s + (0.173 + 0.984i)5-s + (−0.5 + 0.866i)8-s + 10-s + (0.173 − 0.984i)11-s + (0.766 − 0.642i)13-s + (0.766 + 0.642i)16-s + 17-s + 19-s + (0.173 − 0.984i)20-s + (−0.939 − 0.342i)22-s + (0.766 − 0.642i)23-s + (−0.939 + 0.342i)25-s + (−0.5 − 0.866i)26-s + ⋯
L(s)  = 1  + (0.173 − 0.984i)2-s + (−0.939 − 0.342i)4-s + (0.173 + 0.984i)5-s + (−0.5 + 0.866i)8-s + 10-s + (0.173 − 0.984i)11-s + (0.766 − 0.642i)13-s + (0.766 + 0.642i)16-s + 17-s + 19-s + (0.173 − 0.984i)20-s + (−0.939 − 0.342i)22-s + (0.766 − 0.642i)23-s + (−0.939 + 0.342i)25-s + (−0.5 − 0.866i)26-s + ⋯

Functional equation

Λ(s)=(189s/2ΓR(s)L(s)=((0.4530.891i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.453 - 0.891i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(189s/2ΓR(s)L(s)=((0.4530.891i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.453 - 0.891i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 189189    =    3373^{3} \cdot 7
Sign: 0.4530.891i0.453 - 0.891i
Analytic conductor: 0.8777120.877712
Root analytic conductor: 0.8777120.877712
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ189(58,)\chi_{189} (58, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 189, (0: ), 0.4530.891i)(1,\ 189,\ (0:\ ),\ 0.453 - 0.891i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.0443136390.6404017618i1.044313639 - 0.6404017618i
L(12)L(\frac12) \approx 1.0443136390.6404017618i1.044313639 - 0.6404017618i
L(1)L(1) \approx 1.0346761020.4542708951i1.034676102 - 0.4542708951i
L(1)L(1) \approx 1.0346761020.4542708951i1.034676102 - 0.4542708951i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1 1
good2 1+(0.1730.984i)T 1 + (0.173 - 0.984i)T
5 1+(0.173+0.984i)T 1 + (0.173 + 0.984i)T
11 1+(0.1730.984i)T 1 + (0.173 - 0.984i)T
13 1+(0.7660.642i)T 1 + (0.766 - 0.642i)T
17 1+T 1 + T
19 1+T 1 + T
23 1+(0.7660.642i)T 1 + (0.766 - 0.642i)T
29 1+(0.766+0.642i)T 1 + (0.766 + 0.642i)T
31 1+(0.9390.342i)T 1 + (-0.939 - 0.342i)T
37 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
41 1+(0.7660.642i)T 1 + (0.766 - 0.642i)T
43 1+(0.939+0.342i)T 1 + (-0.939 + 0.342i)T
47 1+(0.939+0.342i)T 1 + (-0.939 + 0.342i)T
53 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
59 1+(0.7660.642i)T 1 + (0.766 - 0.642i)T
61 1+(0.939+0.342i)T 1 + (-0.939 + 0.342i)T
67 1+(0.173+0.984i)T 1 + (0.173 + 0.984i)T
71 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
73 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
79 1+(0.1730.984i)T 1 + (0.173 - 0.984i)T
83 1+(0.766+0.642i)T 1 + (0.766 + 0.642i)T
89 1+T 1 + T
97 1+(0.939+0.342i)T 1 + (-0.939 + 0.342i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−27.27671612011998391940805961587, −26.0590022361746112598148845488, −25.27604876612926350404598151878, −24.587297594253430050517388621565, −23.47604442901040182096797190566, −22.9571591307116625611684984374, −21.55045266733488437300631739205, −20.82987657954113622418174068757, −19.57811813524147007551731550346, −18.28453687796944918398272787395, −17.433670077283846172357244520255, −16.4843241979071345450009967490, −15.80390980201954526003312682630, −14.60930554197102354735341840200, −13.63828494140203870565655185869, −12.71826220069119484254895937682, −11.765798801006580745791906487776, −9.83536391796834131801970685009, −9.11132479808128202915322965249, −8.00299808447714809790456010520, −6.953474845399503450293077541557, −5.650725332861050933232344236792, −4.786056771248106622576435267622, −3.61489381314884584537595232401, −1.3629583064068997384659541506, 1.226369930478038293095792033335, 2.96215345481123282547604160626, 3.49601573319456912630969288241, 5.247447153546572459138892462383, 6.273084369791884767664262355217, 7.873758347810128847824594814957, 9.08828973632214830387639436542, 10.293970116458570874345443747347, 10.970821476390356864009110726209, 11.92711418426406851668405389903, 13.20824662269498781522422250458, 14.05818496840966066889132239003, 14.87062981313489570706145920056, 16.28649272133739805631738587155, 17.69224982466146614723488341908, 18.53767591155783156050411907931, 19.14302027283227381127004243787, 20.34860836506480884099362553299, 21.25627060125515658682399698254, 22.15219457979153816024800298280, 22.86259795162366415429409277539, 23.79460631939115505319921637849, 25.16032048144191883082653340300, 26.28284042423645566126904226726, 27.09740286639238981218367965805

Graph of the ZZ-function along the critical line