L(s) = 1 | + (0.173 + 0.984i)2-s + (−0.939 + 0.342i)4-s + (0.173 − 0.984i)5-s + (−0.5 − 0.866i)8-s + 10-s + (0.173 + 0.984i)11-s + (0.766 + 0.642i)13-s + (0.766 − 0.642i)16-s + 17-s + 19-s + (0.173 + 0.984i)20-s + (−0.939 + 0.342i)22-s + (0.766 + 0.642i)23-s + (−0.939 − 0.342i)25-s + (−0.5 + 0.866i)26-s + ⋯ |
L(s) = 1 | + (0.173 + 0.984i)2-s + (−0.939 + 0.342i)4-s + (0.173 − 0.984i)5-s + (−0.5 − 0.866i)8-s + 10-s + (0.173 + 0.984i)11-s + (0.766 + 0.642i)13-s + (0.766 − 0.642i)16-s + 17-s + 19-s + (0.173 + 0.984i)20-s + (−0.939 + 0.342i)22-s + (0.766 + 0.642i)23-s + (−0.939 − 0.342i)25-s + (−0.5 + 0.866i)26-s + ⋯ |
Λ(s)=(=(189s/2ΓR(s)L(s)(0.453+0.891i)Λ(1−s)
Λ(s)=(=(189s/2ΓR(s)L(s)(0.453+0.891i)Λ(1−s)
Degree: |
1 |
Conductor: |
189
= 33⋅7
|
Sign: |
0.453+0.891i
|
Analytic conductor: |
0.877712 |
Root analytic conductor: |
0.877712 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ189(88,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 189, (0: ), 0.453+0.891i)
|
Particular Values
L(21) |
≈ |
1.044313639+0.6404017618i |
L(21) |
≈ |
1.044313639+0.6404017618i |
L(1) |
≈ |
1.034676102+0.4542708951i |
L(1) |
≈ |
1.034676102+0.4542708951i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1+(0.173+0.984i)T |
| 5 | 1+(0.173−0.984i)T |
| 11 | 1+(0.173+0.984i)T |
| 13 | 1+(0.766+0.642i)T |
| 17 | 1+T |
| 19 | 1+T |
| 23 | 1+(0.766+0.642i)T |
| 29 | 1+(0.766−0.642i)T |
| 31 | 1+(−0.939+0.342i)T |
| 37 | 1+(−0.5−0.866i)T |
| 41 | 1+(0.766+0.642i)T |
| 43 | 1+(−0.939−0.342i)T |
| 47 | 1+(−0.939−0.342i)T |
| 53 | 1+(−0.5−0.866i)T |
| 59 | 1+(0.766+0.642i)T |
| 61 | 1+(−0.939−0.342i)T |
| 67 | 1+(0.173−0.984i)T |
| 71 | 1+(−0.5+0.866i)T |
| 73 | 1+(−0.5+0.866i)T |
| 79 | 1+(0.173+0.984i)T |
| 83 | 1+(0.766−0.642i)T |
| 89 | 1+T |
| 97 | 1+(−0.939−0.342i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−27.09740286639238981218367965805, −26.28284042423645566126904226726, −25.16032048144191883082653340300, −23.79460631939115505319921637849, −22.86259795162366415429409277539, −22.15219457979153816024800298280, −21.25627060125515658682399698254, −20.34860836506480884099362553299, −19.14302027283227381127004243787, −18.53767591155783156050411907931, −17.69224982466146614723488341908, −16.28649272133739805631738587155, −14.87062981313489570706145920056, −14.05818496840966066889132239003, −13.20824662269498781522422250458, −11.92711418426406851668405389903, −10.970821476390356864009110726209, −10.293970116458570874345443747347, −9.08828973632214830387639436542, −7.873758347810128847824594814957, −6.273084369791884767664262355217, −5.247447153546572459138892462383, −3.49601573319456912630969288241, −2.96215345481123282547604160626, −1.226369930478038293095792033335,
1.3629583064068997384659541506, 3.61489381314884584537595232401, 4.786056771248106622576435267622, 5.650725332861050933232344236792, 6.953474845399503450293077541557, 8.00299808447714809790456010520, 9.11132479808128202915322965249, 9.83536391796834131801970685009, 11.765798801006580745791906487776, 12.71826220069119484254895937682, 13.63828494140203870565655185869, 14.60930554197102354735341840200, 15.80390980201954526003312682630, 16.4843241979071345450009967490, 17.433670077283846172357244520255, 18.28453687796944918398272787395, 19.57811813524147007551731550346, 20.82987657954113622418174068757, 21.55045266733488437300631739205, 22.9571591307116625611684984374, 23.47604442901040182096797190566, 24.587297594253430050517388621565, 25.27604876612926350404598151878, 26.0590022361746112598148845488, 27.27671612011998391940805961587