L(s) = 1 | + (−0.900 + 0.433i)2-s + (−0.222 + 0.974i)3-s + (0.623 − 0.781i)4-s + (0.222 − 0.974i)5-s + (−0.222 − 0.974i)6-s + (−0.222 + 0.974i)8-s + (−0.900 − 0.433i)9-s + (0.222 + 0.974i)10-s + (0.900 − 0.433i)11-s + (0.623 + 0.781i)12-s + (0.900 − 0.433i)13-s + (0.900 + 0.433i)15-s + (−0.222 − 0.974i)16-s + (0.623 + 0.781i)17-s + 18-s − 19-s + ⋯ |
L(s) = 1 | + (−0.900 + 0.433i)2-s + (−0.222 + 0.974i)3-s + (0.623 − 0.781i)4-s + (0.222 − 0.974i)5-s + (−0.222 − 0.974i)6-s + (−0.222 + 0.974i)8-s + (−0.900 − 0.433i)9-s + (0.222 + 0.974i)10-s + (0.900 − 0.433i)11-s + (0.623 + 0.781i)12-s + (0.900 − 0.433i)13-s + (0.900 + 0.433i)15-s + (−0.222 − 0.974i)16-s + (0.623 + 0.781i)17-s + 18-s − 19-s + ⋯ |
Λ(s)=(=(2303s/2ΓR(s+1)L(s)(0.404−0.914i)Λ(1−s)
Λ(s)=(=(2303s/2ΓR(s+1)L(s)(0.404−0.914i)Λ(1−s)
Degree: |
1 |
Conductor: |
2303
= 72⋅47
|
Sign: |
0.404−0.914i
|
Analytic conductor: |
247.491 |
Root analytic conductor: |
247.491 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2303(281,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 2303, (1: ), 0.404−0.914i)
|
Particular Values
L(21) |
≈ |
0.7644435703−0.4975976215i |
L(21) |
≈ |
0.7644435703−0.4975976215i |
L(1) |
≈ |
0.6829317525+0.1187070421i |
L(1) |
≈ |
0.6829317525+0.1187070421i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 47 | 1 |
good | 2 | 1+(−0.900+0.433i)T |
| 3 | 1+(−0.222+0.974i)T |
| 5 | 1+(0.222−0.974i)T |
| 11 | 1+(0.900−0.433i)T |
| 13 | 1+(0.900−0.433i)T |
| 17 | 1+(0.623+0.781i)T |
| 19 | 1−T |
| 23 | 1+(−0.623+0.781i)T |
| 29 | 1+(−0.623−0.781i)T |
| 31 | 1−T |
| 37 | 1+(0.623+0.781i)T |
| 41 | 1+(0.222−0.974i)T |
| 43 | 1+(0.222+0.974i)T |
| 53 | 1+(0.623−0.781i)T |
| 59 | 1+(−0.222−0.974i)T |
| 61 | 1+(0.623+0.781i)T |
| 67 | 1−T |
| 71 | 1+(0.623−0.781i)T |
| 73 | 1+(0.900+0.433i)T |
| 79 | 1+T |
| 83 | 1+(−0.900−0.433i)T |
| 89 | 1+(−0.900−0.433i)T |
| 97 | 1+T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.41956917180007768877040817206, −18.67679739288227938924089176428, −18.24851703555040159942420731755, −17.82134113795869258460985935794, −16.713004988631238376315301457854, −16.556527974828816074116534647635, −15.24547368252857881402960480762, −14.41999527535568375709279626207, −13.82107892047609708608327304021, −12.793754011806742488058588638688, −12.251106650714253352145752786958, −11.33685021126143290553251004250, −11.023863838013678607900488439463, −10.14183895469788263820885041333, −9.220199138134080485868550746634, −8.59112473375367060834316794981, −7.5911404295972950291883072158, −7.05520898725509500805445596172, −6.41900766441700081988598167212, −5.77463759171141363811609810392, −4.1473915554602165317675448264, −3.32420394280968062605478540910, −2.33418328692735688969678270267, −1.79238380909047950063149256215, −0.85597770290885590461184313161,
0.26976788772357063452079610691, 1.1531617760877922792784376204, 2.04746825335380868044335583763, 3.52196425576459615130175823613, 4.150621812948483780892050734873, 5.26283537531244213575758061817, 5.936501630919253288534563845564, 6.3195763786682758931014955318, 7.79787485168278877436301293086, 8.436181802738497273934902414165, 9.01008339563993561691870044193, 9.65445079896002775662091312923, 10.33947343112802512626625355926, 11.16374432418894260466999890944, 11.72072836784383891791247849777, 12.72369852128269797365522516361, 13.72249874920147713068259206423, 14.585394775716736461078441757419, 15.21550862516661855424428662481, 15.96402984028121163068671102240, 16.55831496172411595695993287517, 17.06436236350627825608045747763, 17.562730421994283249599503411968, 18.48511385755417105492606229476, 19.5417689798647478452434374298