L(s) = 1 | + (−0.900 + 0.433i)2-s + (−0.222 + 0.974i)3-s + (0.623 − 0.781i)4-s + (0.222 − 0.974i)5-s + (−0.222 − 0.974i)6-s + (−0.222 + 0.974i)8-s + (−0.900 − 0.433i)9-s + (0.222 + 0.974i)10-s + (0.900 − 0.433i)11-s + (0.623 + 0.781i)12-s + (0.900 − 0.433i)13-s + (0.900 + 0.433i)15-s + (−0.222 − 0.974i)16-s + (0.623 + 0.781i)17-s + 18-s − 19-s + ⋯ |
L(s) = 1 | + (−0.900 + 0.433i)2-s + (−0.222 + 0.974i)3-s + (0.623 − 0.781i)4-s + (0.222 − 0.974i)5-s + (−0.222 − 0.974i)6-s + (−0.222 + 0.974i)8-s + (−0.900 − 0.433i)9-s + (0.222 + 0.974i)10-s + (0.900 − 0.433i)11-s + (0.623 + 0.781i)12-s + (0.900 − 0.433i)13-s + (0.900 + 0.433i)15-s + (−0.222 − 0.974i)16-s + (0.623 + 0.781i)17-s + 18-s − 19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2303 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.404 - 0.914i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2303 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.404 - 0.914i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7644435703 - 0.4975976215i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7644435703 - 0.4975976215i\) |
\(L(1)\) |
\(\approx\) |
\(0.6829317525 + 0.1187070421i\) |
\(L(1)\) |
\(\approx\) |
\(0.6829317525 + 0.1187070421i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 47 | \( 1 \) |
good | 2 | \( 1 + (-0.900 + 0.433i)T \) |
| 3 | \( 1 + (-0.222 + 0.974i)T \) |
| 5 | \( 1 + (0.222 - 0.974i)T \) |
| 11 | \( 1 + (0.900 - 0.433i)T \) |
| 13 | \( 1 + (0.900 - 0.433i)T \) |
| 17 | \( 1 + (0.623 + 0.781i)T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + (-0.623 + 0.781i)T \) |
| 29 | \( 1 + (-0.623 - 0.781i)T \) |
| 31 | \( 1 - T \) |
| 37 | \( 1 + (0.623 + 0.781i)T \) |
| 41 | \( 1 + (0.222 - 0.974i)T \) |
| 43 | \( 1 + (0.222 + 0.974i)T \) |
| 53 | \( 1 + (0.623 - 0.781i)T \) |
| 59 | \( 1 + (-0.222 - 0.974i)T \) |
| 61 | \( 1 + (0.623 + 0.781i)T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 + (0.623 - 0.781i)T \) |
| 73 | \( 1 + (0.900 + 0.433i)T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 + (-0.900 - 0.433i)T \) |
| 89 | \( 1 + (-0.900 - 0.433i)T \) |
| 97 | \( 1 + T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.41956917180007768877040817206, −18.67679739288227938924089176428, −18.24851703555040159942420731755, −17.82134113795869258460985935794, −16.713004988631238376315301457854, −16.556527974828816074116534647635, −15.24547368252857881402960480762, −14.41999527535568375709279626207, −13.82107892047609708608327304021, −12.793754011806742488058588638688, −12.251106650714253352145752786958, −11.33685021126143290553251004250, −11.023863838013678607900488439463, −10.14183895469788263820885041333, −9.220199138134080485868550746634, −8.59112473375367060834316794981, −7.5911404295972950291883072158, −7.05520898725509500805445596172, −6.41900766441700081988598167212, −5.77463759171141363811609810392, −4.1473915554602165317675448264, −3.32420394280968062605478540910, −2.33418328692735688969678270267, −1.79238380909047950063149256215, −0.85597770290885590461184313161,
0.26976788772357063452079610691, 1.1531617760877922792784376204, 2.04746825335380868044335583763, 3.52196425576459615130175823613, 4.150621812948483780892050734873, 5.26283537531244213575758061817, 5.936501630919253288534563845564, 6.3195763786682758931014955318, 7.79787485168278877436301293086, 8.436181802738497273934902414165, 9.01008339563993561691870044193, 9.65445079896002775662091312923, 10.33947343112802512626625355926, 11.16374432418894260466999890944, 11.72072836784383891791247849777, 12.72369852128269797365522516361, 13.72249874920147713068259206423, 14.585394775716736461078441757419, 15.21550862516661855424428662481, 15.96402984028121163068671102240, 16.55831496172411595695993287517, 17.06436236350627825608045747763, 17.562730421994283249599503411968, 18.48511385755417105492606229476, 19.5417689798647478452434374298