Properties

Label 1-2793-2793.1229-r0-0-0
Degree 11
Conductor 27932793
Sign 0.8940.447i0.894 - 0.447i
Analytic cond. 12.970612.9706
Root an. cond. 12.970612.9706
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.980 − 0.198i)2-s + (0.921 − 0.388i)4-s + (0.583 − 0.811i)5-s + (0.826 − 0.563i)8-s + (0.411 − 0.911i)10-s + (−0.623 + 0.781i)11-s + (0.0249 + 0.999i)13-s + (0.698 − 0.715i)16-s + (0.124 + 0.992i)17-s + (0.222 − 0.974i)20-s + (−0.456 + 0.889i)22-s + (0.797 + 0.603i)23-s + (−0.318 − 0.947i)25-s + (0.222 + 0.974i)26-s + (−0.998 − 0.0498i)29-s + ⋯
L(s)  = 1  + (0.980 − 0.198i)2-s + (0.921 − 0.388i)4-s + (0.583 − 0.811i)5-s + (0.826 − 0.563i)8-s + (0.411 − 0.911i)10-s + (−0.623 + 0.781i)11-s + (0.0249 + 0.999i)13-s + (0.698 − 0.715i)16-s + (0.124 + 0.992i)17-s + (0.222 − 0.974i)20-s + (−0.456 + 0.889i)22-s + (0.797 + 0.603i)23-s + (−0.318 − 0.947i)25-s + (0.222 + 0.974i)26-s + (−0.998 − 0.0498i)29-s + ⋯

Functional equation

Λ(s)=(2793s/2ΓR(s)L(s)=((0.8940.447i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(2793s/2ΓR(s)L(s)=((0.8940.447i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 27932793    =    372193 \cdot 7^{2} \cdot 19
Sign: 0.8940.447i0.894 - 0.447i
Analytic conductor: 12.970612.9706
Root analytic conductor: 12.970612.9706
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ2793(1229,)\chi_{2793} (1229, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 2793, (0: ), 0.8940.447i)(1,\ 2793,\ (0:\ ),\ 0.894 - 0.447i)

Particular Values

L(12)L(\frac{1}{2}) \approx 3.7846622030.8935406993i3.784662203 - 0.8935406993i
L(12)L(\frac12) \approx 3.7846622030.8935406993i3.784662203 - 0.8935406993i
L(1)L(1) \approx 2.1588689520.4008227975i2.158868952 - 0.4008227975i
L(1)L(1) \approx 2.1588689520.4008227975i2.158868952 - 0.4008227975i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1 1
19 1 1
good2 1+(0.9800.198i)T 1 + (0.980 - 0.198i)T
5 1+(0.5830.811i)T 1 + (0.583 - 0.811i)T
11 1+(0.623+0.781i)T 1 + (-0.623 + 0.781i)T
13 1+(0.0249+0.999i)T 1 + (0.0249 + 0.999i)T
17 1+(0.124+0.992i)T 1 + (0.124 + 0.992i)T
23 1+(0.797+0.603i)T 1 + (0.797 + 0.603i)T
29 1+(0.9980.0498i)T 1 + (-0.998 - 0.0498i)T
31 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
37 1+(0.733+0.680i)T 1 + (0.733 + 0.680i)T
41 1+(0.4110.911i)T 1 + (-0.411 - 0.911i)T
43 1+(0.6980.715i)T 1 + (0.698 - 0.715i)T
47 1+(0.8530.521i)T 1 + (0.853 - 0.521i)T
53 1+(0.9210.388i)T 1 + (0.921 - 0.388i)T
59 1+(0.6980.715i)T 1 + (0.698 - 0.715i)T
61 1+(0.456+0.889i)T 1 + (0.456 + 0.889i)T
67 1+(0.766+0.642i)T 1 + (-0.766 + 0.642i)T
71 1+(0.542+0.840i)T 1 + (0.542 + 0.840i)T
73 1+(0.8780.478i)T 1 + (0.878 - 0.478i)T
79 1+(0.9390.342i)T 1 + (0.939 - 0.342i)T
83 1+(0.365+0.930i)T 1 + (-0.365 + 0.930i)T
89 1+(0.661+0.749i)T 1 + (-0.661 + 0.749i)T
97 1+(0.173+0.984i)T 1 + (-0.173 + 0.984i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−19.32169925017922958096799477501, −18.45320700758079505551237715479, −17.9379207768167789835452060840, −17.00331331102734224215422636488, −16.331424582365381068391620424039, −15.58147344547891283880800376077, −14.937551193120355399146846175749, −14.291416208893483902436684995334, −13.610023291966038254934587595733, −13.08120092653554035474389183072, −12.360516425347251398399933997880, −11.288125400562323281724448340775, −10.88701497147790316092599831362, −10.21438965081257788927410158409, −9.22671245235877725153445487367, −8.1433501180370925183819269326, −7.45685929223134789031551084140, −6.76381901254827214792858531676, −5.8893929950640886362280919763, −5.44419794341392264726282548444, −4.61198412298529792867929135931, −3.420171016629541589803943637081, −2.89828302870251976241497805888, −2.32406651839747386641969409201, −0.97759322484489408510179169460, 1.05289589189023311218693296393, 1.976013235540507242767267077573, 2.43832174054993944814924656318, 3.81762006881446449175010690295, 4.28862927483708571476919934238, 5.24748638682387616268502592203, 5.656769421141746056084459386583, 6.62046868499142510328882331928, 7.33209588779239404699556748260, 8.26255678942122698418227922834, 9.24955938806863709246989922507, 9.90602970848861137538720783782, 10.634876132416536600543601058130, 11.52980121440351057590255138282, 12.20107879234470162550606322513, 12.90630995711144554874025102000, 13.38312144896350501002732213988, 14.02565063430833458086447154946, 15.02660161651133223057982244308, 15.35505538477847121041623176235, 16.393654683724317880291511756595, 16.89847497779788064049729092343, 17.5587974743141693503260822576, 18.67796662415720670743805025087, 19.27190235941229211928787321116

Graph of the ZZ-function along the critical line