L(s) = 1 | + (0.980 + 0.198i)2-s + (0.921 + 0.388i)4-s + (0.583 + 0.811i)5-s + (0.826 + 0.563i)8-s + (0.411 + 0.911i)10-s + (−0.623 − 0.781i)11-s + (0.0249 − 0.999i)13-s + (0.698 + 0.715i)16-s + (0.124 − 0.992i)17-s + (0.222 + 0.974i)20-s + (−0.456 − 0.889i)22-s + (0.797 − 0.603i)23-s + (−0.318 + 0.947i)25-s + (0.222 − 0.974i)26-s + (−0.998 + 0.0498i)29-s + ⋯ |
L(s) = 1 | + (0.980 + 0.198i)2-s + (0.921 + 0.388i)4-s + (0.583 + 0.811i)5-s + (0.826 + 0.563i)8-s + (0.411 + 0.911i)10-s + (−0.623 − 0.781i)11-s + (0.0249 − 0.999i)13-s + (0.698 + 0.715i)16-s + (0.124 − 0.992i)17-s + (0.222 + 0.974i)20-s + (−0.456 − 0.889i)22-s + (0.797 − 0.603i)23-s + (−0.318 + 0.947i)25-s + (0.222 − 0.974i)26-s + (−0.998 + 0.0498i)29-s + ⋯ |
Λ(s)=(=(2793s/2ΓR(s)L(s)(0.894+0.447i)Λ(1−s)
Λ(s)=(=(2793s/2ΓR(s)L(s)(0.894+0.447i)Λ(1−s)
Degree: |
1 |
Conductor: |
2793
= 3⋅72⋅19
|
Sign: |
0.894+0.447i
|
Analytic conductor: |
12.9706 |
Root analytic conductor: |
12.9706 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2793(1409,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 2793, (0: ), 0.894+0.447i)
|
Particular Values
L(21) |
≈ |
3.784662203+0.8935406993i |
L(21) |
≈ |
3.784662203+0.8935406993i |
L(1) |
≈ |
2.158868952+0.4008227975i |
L(1) |
≈ |
2.158868952+0.4008227975i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
| 19 | 1 |
good | 2 | 1+(0.980+0.198i)T |
| 5 | 1+(0.583+0.811i)T |
| 11 | 1+(−0.623−0.781i)T |
| 13 | 1+(0.0249−0.999i)T |
| 17 | 1+(0.124−0.992i)T |
| 23 | 1+(0.797−0.603i)T |
| 29 | 1+(−0.998+0.0498i)T |
| 31 | 1+(0.5+0.866i)T |
| 37 | 1+(0.733−0.680i)T |
| 41 | 1+(−0.411+0.911i)T |
| 43 | 1+(0.698+0.715i)T |
| 47 | 1+(0.853+0.521i)T |
| 53 | 1+(0.921+0.388i)T |
| 59 | 1+(0.698+0.715i)T |
| 61 | 1+(0.456−0.889i)T |
| 67 | 1+(−0.766−0.642i)T |
| 71 | 1+(0.542−0.840i)T |
| 73 | 1+(0.878+0.478i)T |
| 79 | 1+(0.939+0.342i)T |
| 83 | 1+(−0.365−0.930i)T |
| 89 | 1+(−0.661−0.749i)T |
| 97 | 1+(−0.173−0.984i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.27190235941229211928787321116, −18.67796662415720670743805025087, −17.5587974743141693503260822576, −16.89847497779788064049729092343, −16.393654683724317880291511756595, −15.35505538477847121041623176235, −15.02660161651133223057982244308, −14.02565063430833458086447154946, −13.38312144896350501002732213988, −12.90630995711144554874025102000, −12.20107879234470162550606322513, −11.52980121440351057590255138282, −10.634876132416536600543601058130, −9.90602970848861137538720783782, −9.24955938806863709246989922507, −8.26255678942122698418227922834, −7.33209588779239404699556748260, −6.62046868499142510328882331928, −5.656769421141746056084459386583, −5.24748638682387616268502592203, −4.28862927483708571476919934238, −3.81762006881446449175010690295, −2.43832174054993944814924656318, −1.976013235540507242767267077573, −1.05289589189023311218693296393,
0.97759322484489408510179169460, 2.32406651839747386641969409201, 2.89828302870251976241497805888, 3.420171016629541589803943637081, 4.61198412298529792867929135931, 5.44419794341392264726282548444, 5.8893929950640886362280919763, 6.76381901254827214792858531676, 7.45685929223134789031551084140, 8.1433501180370925183819269326, 9.22671245235877725153445487367, 10.21438965081257788927410158409, 10.88701497147790316092599831362, 11.288125400562323281724448340775, 12.360516425347251398399933997880, 13.08120092653554035474389183072, 13.610023291966038254934587595733, 14.291416208893483902436684995334, 14.937551193120355399146846175749, 15.58147344547891283880800376077, 16.331424582365381068391620424039, 17.00331331102734224215422636488, 17.9379207768167789835452060840, 18.45320700758079505551237715479, 19.32169925017922958096799477501