L(s) = 1 | + (0.988 + 0.149i)2-s + (0.955 + 0.294i)4-s + (0.0747 + 0.997i)5-s + (0.900 + 0.433i)8-s + (−0.0747 + 0.997i)10-s + (−0.623 + 0.781i)11-s + (−0.365 − 0.930i)13-s + (0.826 + 0.563i)16-s + (0.955 − 0.294i)17-s + (−0.222 + 0.974i)20-s + (−0.733 + 0.680i)22-s + (−0.955 − 0.294i)23-s + (−0.988 + 0.149i)25-s + (−0.222 − 0.974i)26-s + (0.733 + 0.680i)29-s + ⋯ |
L(s) = 1 | + (0.988 + 0.149i)2-s + (0.955 + 0.294i)4-s + (0.0747 + 0.997i)5-s + (0.900 + 0.433i)8-s + (−0.0747 + 0.997i)10-s + (−0.623 + 0.781i)11-s + (−0.365 − 0.930i)13-s + (0.826 + 0.563i)16-s + (0.955 − 0.294i)17-s + (−0.222 + 0.974i)20-s + (−0.733 + 0.680i)22-s + (−0.955 − 0.294i)23-s + (−0.988 + 0.149i)25-s + (−0.222 − 0.974i)26-s + (0.733 + 0.680i)29-s + ⋯ |
Λ(s)=(=(2793s/2ΓR(s)L(s)(−0.433+0.901i)Λ(1−s)
Λ(s)=(=(2793s/2ΓR(s)L(s)(−0.433+0.901i)Λ(1−s)
Degree: |
1 |
Conductor: |
2793
= 3⋅72⋅19
|
Sign: |
−0.433+0.901i
|
Analytic conductor: |
12.9706 |
Root analytic conductor: |
12.9706 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2793(125,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 2793, (0: ), −0.433+0.901i)
|
Particular Values
L(21) |
≈ |
1.554604680+2.471777635i |
L(21) |
≈ |
1.554604680+2.471777635i |
L(1) |
≈ |
1.698780234+0.7671302297i |
L(1) |
≈ |
1.698780234+0.7671302297i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
| 19 | 1 |
good | 2 | 1+(0.988+0.149i)T |
| 5 | 1+(0.0747+0.997i)T |
| 11 | 1+(−0.623+0.781i)T |
| 13 | 1+(−0.365−0.930i)T |
| 17 | 1+(0.955−0.294i)T |
| 23 | 1+(−0.955−0.294i)T |
| 29 | 1+(0.733+0.680i)T |
| 31 | 1−T |
| 37 | 1+(−0.222+0.974i)T |
| 41 | 1+(0.0747+0.997i)T |
| 43 | 1+(0.826+0.563i)T |
| 47 | 1+(0.365+0.930i)T |
| 53 | 1+(−0.955−0.294i)T |
| 59 | 1+(0.826+0.563i)T |
| 61 | 1+(0.733+0.680i)T |
| 67 | 1+(−0.5+0.866i)T |
| 71 | 1+(0.733−0.680i)T |
| 73 | 1+(−0.365+0.930i)T |
| 79 | 1+(−0.5−0.866i)T |
| 83 | 1+(0.623+0.781i)T |
| 89 | 1+(−0.988+0.149i)T |
| 97 | 1+(0.5+0.866i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.24234250544144925868874117530, −18.4868153534705992165472627404, −17.28334493884010728277172650925, −16.74115372475585609304397022585, −15.929542075889010636715472305725, −15.72542438731269651481045055121, −14.42307395378420982529268731447, −14.0496890120569732618754730314, −13.33305393177512477422691477951, −12.54625469105532861420367022545, −12.09067242937032482334461797152, −11.36531392703703096787070617539, −10.49429276856092703911034117976, −9.76116354660900760346925707162, −8.88467959687146003084097583993, −7.97955022823479324482560584105, −7.347108905343628749484944281748, −6.242632753490220127942478040334, −5.583588360761473730261682023304, −5.06504221291456510283084868041, −4.07134364533356728969658759516, −3.58817378025445098160350882473, −2.360567095670190557678386433124, −1.735626370277855097554075418842, −0.58348085774111694253315177396,
1.41140880462761739677111758103, 2.5401875999415748512414926249, 2.91479367021822438139630844516, 3.80623314814166405160297634500, 4.74543858098218735670107170287, 5.48930532215995211617580181592, 6.16738379820170038723192832602, 7.04538757011135305298924977745, 7.61573729803759810010708410477, 8.19988379412049230361545667276, 9.751512939943064923748258837705, 10.25201810664564611660511131808, 10.89189739818391179627969527766, 11.75970059526441428370312409036, 12.45870133990987542214667640061, 13.026270920146744068283177588863, 13.92774850343056913268690035940, 14.60217371970645920996641416713, 14.93884270175590281597036058778, 15.82956911161008078988734647219, 16.30765396211397030292922060996, 17.44669565049243378093522920330, 17.93118091069407591534084194244, 18.73303714467384925564629904580, 19.6156468568472894204844171413