L(s) = 1 | + (0.642 + 0.766i)5-s + (−0.642 + 0.766i)11-s + (−0.342 + 0.939i)13-s − 17-s − i·19-s + (−0.939 − 0.342i)23-s + (−0.173 + 0.984i)25-s + (−0.342 − 0.939i)29-s + (0.173 + 0.984i)31-s + (0.866 + 0.5i)37-s + (−0.939 − 0.342i)41-s + (0.984 + 0.173i)43-s + (0.173 − 0.984i)47-s + (0.866 + 0.5i)53-s − 55-s + ⋯ |
L(s) = 1 | + (0.642 + 0.766i)5-s + (−0.642 + 0.766i)11-s + (−0.342 + 0.939i)13-s − 17-s − i·19-s + (−0.939 − 0.342i)23-s + (−0.173 + 0.984i)25-s + (−0.342 − 0.939i)29-s + (0.173 + 0.984i)31-s + (0.866 + 0.5i)37-s + (−0.939 − 0.342i)41-s + (0.984 + 0.173i)43-s + (0.173 − 0.984i)47-s + (0.866 + 0.5i)53-s − 55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.947 - 0.318i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.947 - 0.318i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.09073033710 + 0.5549355845i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.09073033710 + 0.5549355845i\) |
\(L(1)\) |
\(\approx\) |
\(0.8531295863 + 0.3032329603i\) |
\(L(1)\) |
\(\approx\) |
\(0.8531295863 + 0.3032329603i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (0.642 + 0.766i)T \) |
| 11 | \( 1 + (-0.642 + 0.766i)T \) |
| 13 | \( 1 + (-0.342 + 0.939i)T \) |
| 17 | \( 1 - T \) |
| 19 | \( 1 - iT \) |
| 23 | \( 1 + (-0.939 - 0.342i)T \) |
| 29 | \( 1 + (-0.342 - 0.939i)T \) |
| 31 | \( 1 + (0.173 + 0.984i)T \) |
| 37 | \( 1 + (0.866 + 0.5i)T \) |
| 41 | \( 1 + (-0.939 - 0.342i)T \) |
| 43 | \( 1 + (0.984 + 0.173i)T \) |
| 47 | \( 1 + (0.173 - 0.984i)T \) |
| 53 | \( 1 + (0.866 + 0.5i)T \) |
| 59 | \( 1 + (-0.342 + 0.939i)T \) |
| 61 | \( 1 + (-0.984 - 0.173i)T \) |
| 67 | \( 1 + (-0.642 - 0.766i)T \) |
| 71 | \( 1 + (-0.5 - 0.866i)T \) |
| 73 | \( 1 + (-0.5 - 0.866i)T \) |
| 79 | \( 1 + (-0.766 - 0.642i)T \) |
| 83 | \( 1 + (-0.342 - 0.939i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (-0.173 + 0.984i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.52276799778594012228261456629, −17.83478183417570062259030636916, −17.40616161968105468155018272968, −16.559760608636237833589806259675, −15.882785287212111416096583716257, −15.33748378861309060605153096843, −14.37045362331476351293322729778, −13.537134804966844063078061308316, −13.11367133229774905250193456276, −12.54216282828560191500936299122, −11.507134444713836803546010760003, −10.86078680104127430747519209398, −10.072879285746615891320607231661, −9.34513183164363716530549212153, −8.647542229864655625741161547344, −7.99387713497099714310323333753, −7.151620217529673840721412530141, −6.07455154735998591620503260890, −5.588993142648098201371087846896, −4.82545013673320536682755049160, −4.03635968447000453798539902469, −2.84227706144190288138154502312, −2.29157526031931736390436592695, −1.14492717505600012477462202256, −0.16190205175286022341586142040,
1.69942724066463248564154639755, 2.15816237952932816567605173987, 2.989910115225261211013526973079, 4.103067596501221247312377968221, 4.71842685662736282659664154498, 5.80040498106063510777540625902, 6.36657206582517806474439137234, 7.16623308012592143140210316623, 7.78076147365774057698388389754, 8.822826624498904789141562589918, 9.5587549637162439860288850945, 10.283740980227695856135252065414, 10.68928480021642335743939271096, 11.79404350132880300063424578979, 12.23713085775549071502669578721, 13.37904659807703955706022268512, 13.70881662797063606315254822228, 14.62086707516023843480881073722, 15.088561109565650913257052475233, 15.917761400396422593397057824872, 16.73276625905435911093094773354, 17.4189028849164977486644490519, 18.17017362546262690818697459612, 18.52900863261483125202653076491, 19.36771946004262093439786249723