Properties

Label 1-3024-3024.619-r0-0-0
Degree $1$
Conductor $3024$
Sign $-0.947 + 0.318i$
Analytic cond. $14.0433$
Root an. cond. $14.0433$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.642 − 0.766i)5-s + (−0.642 − 0.766i)11-s + (−0.342 − 0.939i)13-s − 17-s i·19-s + (−0.939 + 0.342i)23-s + (−0.173 − 0.984i)25-s + (−0.342 + 0.939i)29-s + (0.173 − 0.984i)31-s + (0.866 − 0.5i)37-s + (−0.939 + 0.342i)41-s + (0.984 − 0.173i)43-s + (0.173 + 0.984i)47-s + (0.866 − 0.5i)53-s − 55-s + ⋯
L(s)  = 1  + (0.642 − 0.766i)5-s + (−0.642 − 0.766i)11-s + (−0.342 − 0.939i)13-s − 17-s i·19-s + (−0.939 + 0.342i)23-s + (−0.173 − 0.984i)25-s + (−0.342 + 0.939i)29-s + (0.173 − 0.984i)31-s + (0.866 − 0.5i)37-s + (−0.939 + 0.342i)41-s + (0.984 − 0.173i)43-s + (0.173 + 0.984i)47-s + (0.866 − 0.5i)53-s − 55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.947 + 0.318i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.947 + 0.318i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(3024\)    =    \(2^{4} \cdot 3^{3} \cdot 7\)
Sign: $-0.947 + 0.318i$
Analytic conductor: \(14.0433\)
Root analytic conductor: \(14.0433\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3024} (619, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 3024,\ (0:\ ),\ -0.947 + 0.318i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(-0.09073033710 - 0.5549355845i\)
\(L(\frac12)\) \(\approx\) \(-0.09073033710 - 0.5549355845i\)
\(L(1)\) \(\approx\) \(0.8531295863 - 0.3032329603i\)
\(L(1)\) \(\approx\) \(0.8531295863 - 0.3032329603i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + (0.642 - 0.766i)T \)
11 \( 1 + (-0.642 - 0.766i)T \)
13 \( 1 + (-0.342 - 0.939i)T \)
17 \( 1 - T \)
19 \( 1 - iT \)
23 \( 1 + (-0.939 + 0.342i)T \)
29 \( 1 + (-0.342 + 0.939i)T \)
31 \( 1 + (0.173 - 0.984i)T \)
37 \( 1 + (0.866 - 0.5i)T \)
41 \( 1 + (-0.939 + 0.342i)T \)
43 \( 1 + (0.984 - 0.173i)T \)
47 \( 1 + (0.173 + 0.984i)T \)
53 \( 1 + (0.866 - 0.5i)T \)
59 \( 1 + (-0.342 - 0.939i)T \)
61 \( 1 + (-0.984 + 0.173i)T \)
67 \( 1 + (-0.642 + 0.766i)T \)
71 \( 1 + (-0.5 + 0.866i)T \)
73 \( 1 + (-0.5 + 0.866i)T \)
79 \( 1 + (-0.766 + 0.642i)T \)
83 \( 1 + (-0.342 + 0.939i)T \)
89 \( 1 + T \)
97 \( 1 + (-0.173 - 0.984i)T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.36771946004262093439786249723, −18.52900863261483125202653076491, −18.17017362546262690818697459612, −17.4189028849164977486644490519, −16.73276625905435911093094773354, −15.917761400396422593397057824872, −15.088561109565650913257052475233, −14.62086707516023843480881073722, −13.70881662797063606315254822228, −13.37904659807703955706022268512, −12.23713085775549071502669578721, −11.79404350132880300063424578979, −10.68928480021642335743939271096, −10.283740980227695856135252065414, −9.5587549637162439860288850945, −8.822826624498904789141562589918, −7.78076147365774057698388389754, −7.16623308012592143140210316623, −6.36657206582517806474439137234, −5.80040498106063510777540625902, −4.71842685662736282659664154498, −4.103067596501221247312377968221, −2.989910115225261211013526973079, −2.15816237952932816567605173987, −1.69942724066463248564154639755, 0.16190205175286022341586142040, 1.14492717505600012477462202256, 2.29157526031931736390436592695, 2.84227706144190288138154502312, 4.03635968447000453798539902469, 4.82545013673320536682755049160, 5.588993142648098201371087846896, 6.07455154735998591620503260890, 7.151620217529673840721412530141, 7.99387713497099714310323333753, 8.647542229864655625741161547344, 9.34513183164363716530549212153, 10.072879285746615891320607231661, 10.86078680104127430747519209398, 11.507134444713836803546010760003, 12.54216282828560191500936299122, 13.11367133229774905250193456276, 13.537134804966844063078061308316, 14.37045362331476351293322729778, 15.33748378861309060605153096843, 15.882785287212111416096583716257, 16.559760608636237833589806259675, 17.40616161968105468155018272968, 17.83478183417570062259030636916, 18.52276799778594012228261456629

Graph of the $Z$-function along the critical line