L(s) = 1 | + (0.642 − 0.766i)5-s + (−0.642 − 0.766i)11-s + (−0.342 − 0.939i)13-s − 17-s − i·19-s + (−0.939 + 0.342i)23-s + (−0.173 − 0.984i)25-s + (−0.342 + 0.939i)29-s + (0.173 − 0.984i)31-s + (0.866 − 0.5i)37-s + (−0.939 + 0.342i)41-s + (0.984 − 0.173i)43-s + (0.173 + 0.984i)47-s + (0.866 − 0.5i)53-s − 55-s + ⋯ |
L(s) = 1 | + (0.642 − 0.766i)5-s + (−0.642 − 0.766i)11-s + (−0.342 − 0.939i)13-s − 17-s − i·19-s + (−0.939 + 0.342i)23-s + (−0.173 − 0.984i)25-s + (−0.342 + 0.939i)29-s + (0.173 − 0.984i)31-s + (0.866 − 0.5i)37-s + (−0.939 + 0.342i)41-s + (0.984 − 0.173i)43-s + (0.173 + 0.984i)47-s + (0.866 − 0.5i)53-s − 55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.947 + 0.318i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.947 + 0.318i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.09073033710 - 0.5549355845i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.09073033710 - 0.5549355845i\) |
\(L(1)\) |
\(\approx\) |
\(0.8531295863 - 0.3032329603i\) |
\(L(1)\) |
\(\approx\) |
\(0.8531295863 - 0.3032329603i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (0.642 - 0.766i)T \) |
| 11 | \( 1 + (-0.642 - 0.766i)T \) |
| 13 | \( 1 + (-0.342 - 0.939i)T \) |
| 17 | \( 1 - T \) |
| 19 | \( 1 - iT \) |
| 23 | \( 1 + (-0.939 + 0.342i)T \) |
| 29 | \( 1 + (-0.342 + 0.939i)T \) |
| 31 | \( 1 + (0.173 - 0.984i)T \) |
| 37 | \( 1 + (0.866 - 0.5i)T \) |
| 41 | \( 1 + (-0.939 + 0.342i)T \) |
| 43 | \( 1 + (0.984 - 0.173i)T \) |
| 47 | \( 1 + (0.173 + 0.984i)T \) |
| 53 | \( 1 + (0.866 - 0.5i)T \) |
| 59 | \( 1 + (-0.342 - 0.939i)T \) |
| 61 | \( 1 + (-0.984 + 0.173i)T \) |
| 67 | \( 1 + (-0.642 + 0.766i)T \) |
| 71 | \( 1 + (-0.5 + 0.866i)T \) |
| 73 | \( 1 + (-0.5 + 0.866i)T \) |
| 79 | \( 1 + (-0.766 + 0.642i)T \) |
| 83 | \( 1 + (-0.342 + 0.939i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (-0.173 - 0.984i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.36771946004262093439786249723, −18.52900863261483125202653076491, −18.17017362546262690818697459612, −17.4189028849164977486644490519, −16.73276625905435911093094773354, −15.917761400396422593397057824872, −15.088561109565650913257052475233, −14.62086707516023843480881073722, −13.70881662797063606315254822228, −13.37904659807703955706022268512, −12.23713085775549071502669578721, −11.79404350132880300063424578979, −10.68928480021642335743939271096, −10.283740980227695856135252065414, −9.5587549637162439860288850945, −8.822826624498904789141562589918, −7.78076147365774057698388389754, −7.16623308012592143140210316623, −6.36657206582517806474439137234, −5.80040498106063510777540625902, −4.71842685662736282659664154498, −4.103067596501221247312377968221, −2.989910115225261211013526973079, −2.15816237952932816567605173987, −1.69942724066463248564154639755,
0.16190205175286022341586142040, 1.14492717505600012477462202256, 2.29157526031931736390436592695, 2.84227706144190288138154502312, 4.03635968447000453798539902469, 4.82545013673320536682755049160, 5.588993142648098201371087846896, 6.07455154735998591620503260890, 7.151620217529673840721412530141, 7.99387713497099714310323333753, 8.647542229864655625741161547344, 9.34513183164363716530549212153, 10.072879285746615891320607231661, 10.86078680104127430747519209398, 11.507134444713836803546010760003, 12.54216282828560191500936299122, 13.11367133229774905250193456276, 13.537134804966844063078061308316, 14.37045362331476351293322729778, 15.33748378861309060605153096843, 15.882785287212111416096583716257, 16.559760608636237833589806259675, 17.40616161968105468155018272968, 17.83478183417570062259030636916, 18.52276799778594012228261456629