Properties

Label 1-3040-3040.1059-r0-0-0
Degree 11
Conductor 30403040
Sign 0.0113+0.999i0.0113 + 0.999i
Analytic cond. 14.117714.1177
Root an. cond. 14.117714.1177
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.422 + 0.906i)3-s + (0.866 + 0.5i)7-s + (−0.642 + 0.766i)9-s + (0.965 + 0.258i)11-s + (0.906 + 0.422i)13-s + (0.766 − 0.642i)17-s + (−0.0871 + 0.996i)21-s + (0.984 + 0.173i)23-s + (−0.965 − 0.258i)27-s + (−0.0871 − 0.996i)29-s + (−0.5 + 0.866i)31-s + (0.173 + 0.984i)33-s + (−0.707 + 0.707i)37-s + i·39-s + (−0.342 + 0.939i)41-s + ⋯
L(s)  = 1  + (0.422 + 0.906i)3-s + (0.866 + 0.5i)7-s + (−0.642 + 0.766i)9-s + (0.965 + 0.258i)11-s + (0.906 + 0.422i)13-s + (0.766 − 0.642i)17-s + (−0.0871 + 0.996i)21-s + (0.984 + 0.173i)23-s + (−0.965 − 0.258i)27-s + (−0.0871 − 0.996i)29-s + (−0.5 + 0.866i)31-s + (0.173 + 0.984i)33-s + (−0.707 + 0.707i)37-s + i·39-s + (−0.342 + 0.939i)41-s + ⋯

Functional equation

Λ(s)=(3040s/2ΓR(s)L(s)=((0.0113+0.999i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0113 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(3040s/2ΓR(s)L(s)=((0.0113+0.999i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0113 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 30403040    =    255192^{5} \cdot 5 \cdot 19
Sign: 0.0113+0.999i0.0113 + 0.999i
Analytic conductor: 14.117714.1177
Root analytic conductor: 14.117714.1177
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ3040(1059,)\chi_{3040} (1059, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 3040, (0: ), 0.0113+0.999i)(1,\ 3040,\ (0:\ ),\ 0.0113 + 0.999i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.867046782+1.888309680i1.867046782 + 1.888309680i
L(12)L(\frac12) \approx 1.867046782+1.888309680i1.867046782 + 1.888309680i
L(1)L(1) \approx 1.385561239+0.6459444930i1.385561239 + 0.6459444930i
L(1)L(1) \approx 1.385561239+0.6459444930i1.385561239 + 0.6459444930i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
19 1 1
good3 1+(0.422+0.906i)T 1 + (0.422 + 0.906i)T
7 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
11 1+(0.965+0.258i)T 1 + (0.965 + 0.258i)T
13 1+(0.906+0.422i)T 1 + (0.906 + 0.422i)T
17 1+(0.7660.642i)T 1 + (0.766 - 0.642i)T
23 1+(0.984+0.173i)T 1 + (0.984 + 0.173i)T
29 1+(0.08710.996i)T 1 + (-0.0871 - 0.996i)T
31 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
37 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
41 1+(0.342+0.939i)T 1 + (-0.342 + 0.939i)T
43 1+(0.819+0.573i)T 1 + (0.819 + 0.573i)T
47 1+(0.7660.642i)T 1 + (-0.766 - 0.642i)T
53 1+(0.5730.819i)T 1 + (-0.573 - 0.819i)T
59 1+(0.0871+0.996i)T 1 + (-0.0871 + 0.996i)T
61 1+(0.8190.573i)T 1 + (0.819 - 0.573i)T
67 1+(0.08710.996i)T 1 + (-0.0871 - 0.996i)T
71 1+(0.9840.173i)T 1 + (0.984 - 0.173i)T
73 1+(0.342+0.939i)T 1 + (-0.342 + 0.939i)T
79 1+(0.939+0.342i)T 1 + (0.939 + 0.342i)T
83 1+(0.9650.258i)T 1 + (0.965 - 0.258i)T
89 1+(0.3420.939i)T 1 + (-0.342 - 0.939i)T
97 1+(0.7660.642i)T 1 + (0.766 - 0.642i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−18.96691699450604117603639703362, −18.19815277027202803353565704923, −17.44036990189724819357045982526, −17.06528274628365236491986887689, −16.16001989452895468715248100608, −15.080395874086979139321986910935, −14.51077259898262264378141505804, −14.03854386493979955013747207013, −13.26768544020898966958458023377, −12.58761009028599869858460506118, −11.88415578445611577790801287884, −11.04662984254607018100660177066, −10.604389224049269771611778785856, −9.293456764762808367533609684710, −8.757818848278064236826141360667, −8.040742842841826481420328444992, −7.402041689226055525108378829763, −6.65842625485161410037520267403, −5.88172003589413907269061724822, −5.09901712539463588613538172423, −3.782084538863046297794672605123, −3.520270781733525847330426367309, −2.25440077648065726535319381146, −1.37981384062206793716624281534, −0.89047132311139894650657769556, 1.21328985830844826986103634764, 1.99317064519129095767831654708, 3.07681543542498606265058414486, 3.7076102416717865289624008435, 4.63523691585187927909698248042, 5.13744831133096087611396574688, 6.04274939767477023293907276360, 6.96597883909753170400438582489, 7.9681443811084039374430536067, 8.56990505509244123686403798597, 9.242127109106968323079977531138, 9.79051390842772141462142792366, 10.77270117117780104737939272882, 11.45972460089521449253423504269, 11.84232028816885072204397398501, 12.97241837471634936912887594136, 13.93630335986117895845317913077, 14.3323456073818108862083012262, 15.031182146756003930775195539097, 15.60891806041100574814374072945, 16.43079078087169865298215946451, 16.98634228708912912175257933716, 17.77579614351608894004270626684, 18.58091288530988558448049277558, 19.26511647979459878533737574130

Graph of the ZZ-function along the critical line