L(s) = 1 | + (0.422 − 0.906i)3-s + (0.866 − 0.5i)7-s + (−0.642 − 0.766i)9-s + (0.965 − 0.258i)11-s + (0.906 − 0.422i)13-s + (0.766 + 0.642i)17-s + (−0.0871 − 0.996i)21-s + (0.984 − 0.173i)23-s + (−0.965 + 0.258i)27-s + (−0.0871 + 0.996i)29-s + (−0.5 − 0.866i)31-s + (0.173 − 0.984i)33-s + (−0.707 − 0.707i)37-s − i·39-s + (−0.342 − 0.939i)41-s + ⋯ |
L(s) = 1 | + (0.422 − 0.906i)3-s + (0.866 − 0.5i)7-s + (−0.642 − 0.766i)9-s + (0.965 − 0.258i)11-s + (0.906 − 0.422i)13-s + (0.766 + 0.642i)17-s + (−0.0871 − 0.996i)21-s + (0.984 − 0.173i)23-s + (−0.965 + 0.258i)27-s + (−0.0871 + 0.996i)29-s + (−0.5 − 0.866i)31-s + (0.173 − 0.984i)33-s + (−0.707 − 0.707i)37-s − i·39-s + (−0.342 − 0.939i)41-s + ⋯ |
Λ(s)=(=(3040s/2ΓR(s)L(s)(0.0113−0.999i)Λ(1−s)
Λ(s)=(=(3040s/2ΓR(s)L(s)(0.0113−0.999i)Λ(1−s)
Degree: |
1 |
Conductor: |
3040
= 25⋅5⋅19
|
Sign: |
0.0113−0.999i
|
Analytic conductor: |
14.1177 |
Root analytic conductor: |
14.1177 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3040(2219,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 3040, (0: ), 0.0113−0.999i)
|
Particular Values
L(21) |
≈ |
1.867046782−1.888309680i |
L(21) |
≈ |
1.867046782−1.888309680i |
L(1) |
≈ |
1.385561239−0.6459444930i |
L(1) |
≈ |
1.385561239−0.6459444930i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1 |
good | 3 | 1+(0.422−0.906i)T |
| 7 | 1+(0.866−0.5i)T |
| 11 | 1+(0.965−0.258i)T |
| 13 | 1+(0.906−0.422i)T |
| 17 | 1+(0.766+0.642i)T |
| 23 | 1+(0.984−0.173i)T |
| 29 | 1+(−0.0871+0.996i)T |
| 31 | 1+(−0.5−0.866i)T |
| 37 | 1+(−0.707−0.707i)T |
| 41 | 1+(−0.342−0.939i)T |
| 43 | 1+(0.819−0.573i)T |
| 47 | 1+(−0.766+0.642i)T |
| 53 | 1+(−0.573+0.819i)T |
| 59 | 1+(−0.0871−0.996i)T |
| 61 | 1+(0.819+0.573i)T |
| 67 | 1+(−0.0871+0.996i)T |
| 71 | 1+(0.984+0.173i)T |
| 73 | 1+(−0.342−0.939i)T |
| 79 | 1+(0.939−0.342i)T |
| 83 | 1+(0.965+0.258i)T |
| 89 | 1+(−0.342+0.939i)T |
| 97 | 1+(0.766+0.642i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.26511647979459878533737574130, −18.58091288530988558448049277558, −17.77579614351608894004270626684, −16.98634228708912912175257933716, −16.43079078087169865298215946451, −15.60891806041100574814374072945, −15.031182146756003930775195539097, −14.3323456073818108862083012262, −13.93630335986117895845317913077, −12.97241837471634936912887594136, −11.84232028816885072204397398501, −11.45972460089521449253423504269, −10.77270117117780104737939272882, −9.79051390842772141462142792366, −9.242127109106968323079977531138, −8.56990505509244123686403798597, −7.9681443811084039374430536067, −6.96597883909753170400438582489, −6.04274939767477023293907276360, −5.13744831133096087611396574688, −4.63523691585187927909698248042, −3.7076102416717865289624008435, −3.07681543542498606265058414486, −1.99317064519129095767831654708, −1.21328985830844826986103634764,
0.89047132311139894650657769556, 1.37981384062206793716624281534, 2.25440077648065726535319381146, 3.520270781733525847330426367309, 3.782084538863046297794672605123, 5.09901712539463588613538172423, 5.88172003589413907269061724822, 6.65842625485161410037520267403, 7.402041689226055525108378829763, 8.040742842841826481420328444992, 8.757818848278064236826141360667, 9.293456764762808367533609684710, 10.604389224049269771611778785856, 11.04662984254607018100660177066, 11.88415578445611577790801287884, 12.58761009028599869858460506118, 13.26768544020898966958458023377, 14.03854386493979955013747207013, 14.51077259898262264378141505804, 15.080395874086979139321986910935, 16.16001989452895468715248100608, 17.06528274628365236491986887689, 17.44036990189724819357045982526, 18.19815277027202803353565704923, 18.96691699450604117603639703362