L(s) = 1 | + (0.951 − 0.309i)2-s + (0.587 − 0.809i)3-s + (0.809 − 0.587i)4-s + (−0.309 + 0.951i)5-s + (0.309 − 0.951i)6-s + (0.809 − 0.587i)7-s + (0.587 − 0.809i)8-s + (−0.309 − 0.951i)9-s + i·10-s − i·12-s + (0.309 + 0.951i)13-s + (0.587 − 0.809i)14-s + (0.587 + 0.809i)15-s + (0.309 − 0.951i)16-s + (−0.951 − 0.309i)17-s + (−0.587 − 0.809i)18-s + ⋯ |
L(s) = 1 | + (0.951 − 0.309i)2-s + (0.587 − 0.809i)3-s + (0.809 − 0.587i)4-s + (−0.309 + 0.951i)5-s + (0.309 − 0.951i)6-s + (0.809 − 0.587i)7-s + (0.587 − 0.809i)8-s + (−0.309 − 0.951i)9-s + i·10-s − i·12-s + (0.309 + 0.951i)13-s + (0.587 − 0.809i)14-s + (0.587 + 0.809i)15-s + (0.309 − 0.951i)16-s + (−0.951 − 0.309i)17-s + (−0.587 − 0.809i)18-s + ⋯ |
Λ(s)=(=(319s/2ΓR(s)L(s)(0.421−0.906i)Λ(1−s)
Λ(s)=(=(319s/2ΓR(s)L(s)(0.421−0.906i)Λ(1−s)
Degree: |
1 |
Conductor: |
319
= 11⋅29
|
Sign: |
0.421−0.906i
|
Analytic conductor: |
1.48142 |
Root analytic conductor: |
1.48142 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ319(128,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 319, (0: ), 0.421−0.906i)
|
Particular Values
L(21) |
≈ |
2.298431607−1.466611677i |
L(21) |
≈ |
2.298431607−1.466611677i |
L(1) |
≈ |
1.969713667−0.8158712504i |
L(1) |
≈ |
1.969713667−0.8158712504i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1 |
| 29 | 1 |
good | 2 | 1+(0.951−0.309i)T |
| 3 | 1+(0.587−0.809i)T |
| 5 | 1+(−0.309+0.951i)T |
| 7 | 1+(0.809−0.587i)T |
| 13 | 1+(0.309+0.951i)T |
| 17 | 1+(−0.951−0.309i)T |
| 19 | 1+(−0.587+0.809i)T |
| 23 | 1+T |
| 31 | 1+(−0.951+0.309i)T |
| 37 | 1+(0.587+0.809i)T |
| 41 | 1+(0.587−0.809i)T |
| 43 | 1−iT |
| 47 | 1+(−0.587+0.809i)T |
| 53 | 1+(0.309+0.951i)T |
| 59 | 1+(−0.809+0.587i)T |
| 61 | 1+(−0.951−0.309i)T |
| 67 | 1−T |
| 71 | 1+(−0.309+0.951i)T |
| 73 | 1+(−0.587−0.809i)T |
| 79 | 1+(0.951−0.309i)T |
| 83 | 1+(−0.309+0.951i)T |
| 89 | 1+iT |
| 97 | 1+(0.951−0.309i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−25.00237898556459419998129966055, −24.58901508829854979369877002502, −23.58426963450734624364356767399, −22.57747145138544992440696822034, −21.520687990560396870905131242158, −21.1226602864384075809816680625, −20.15191338529568606403036078333, −19.62615022030843978781150000903, −17.834685673446630973194356023147, −16.861148676672509600677495695405, −15.94097377330563390137560607762, −15.17636481883180801406917092836, −14.71198631380233332620819729679, −13.30107900393986176794478476096, −12.8340265758598796186755955286, −11.429788928905716553275286191677, −10.8381435332592640567699379587, −9.11667428577254030258629567808, −8.425506515595833227528960657152, −7.58473074442533043872991905223, −5.88228384298036932340527115346, −4.915529016063408451616918498513, −4.3681585376316529177396228753, −3.11833956380532663456438694602, −1.94281547192344600712974598763,
1.49334617639516090936940977479, 2.43878514299481468885099256884, 3.596803797426690241409077111186, 4.48350955971953564978303327662, 6.12502237622174983141798980601, 6.96805168158769854964504458124, 7.645497047813495114145122233518, 9.02690377279753231734951527197, 10.58178451733003498160650592083, 11.27066081075708179731598424245, 12.125862466198467121416519670789, 13.30512625633963677192836579118, 14.03486857014266607311350589965, 14.642604688912718148787987242, 15.4208154398111197013500025217, 16.83720585381644720730244905728, 18.13720619515626823664499352519, 18.89248090630589851780717906545, 19.68032552484494361339064230370, 20.58701630701660332454490232023, 21.32919346542754795251309057233, 22.46173104709271562072890532479, 23.429493994820739337646284176551, 23.81497634419343336069901809679, 24.79525161367746171471168023551