Properties

Label 1-319-319.128-r0-0-0
Degree 11
Conductor 319319
Sign 0.4210.906i0.421 - 0.906i
Analytic cond. 1.481421.48142
Root an. cond. 1.481421.48142
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.951 − 0.309i)2-s + (0.587 − 0.809i)3-s + (0.809 − 0.587i)4-s + (−0.309 + 0.951i)5-s + (0.309 − 0.951i)6-s + (0.809 − 0.587i)7-s + (0.587 − 0.809i)8-s + (−0.309 − 0.951i)9-s + i·10-s i·12-s + (0.309 + 0.951i)13-s + (0.587 − 0.809i)14-s + (0.587 + 0.809i)15-s + (0.309 − 0.951i)16-s + (−0.951 − 0.309i)17-s + (−0.587 − 0.809i)18-s + ⋯
L(s)  = 1  + (0.951 − 0.309i)2-s + (0.587 − 0.809i)3-s + (0.809 − 0.587i)4-s + (−0.309 + 0.951i)5-s + (0.309 − 0.951i)6-s + (0.809 − 0.587i)7-s + (0.587 − 0.809i)8-s + (−0.309 − 0.951i)9-s + i·10-s i·12-s + (0.309 + 0.951i)13-s + (0.587 − 0.809i)14-s + (0.587 + 0.809i)15-s + (0.309 − 0.951i)16-s + (−0.951 − 0.309i)17-s + (−0.587 − 0.809i)18-s + ⋯

Functional equation

Λ(s)=(319s/2ΓR(s)L(s)=((0.4210.906i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 319 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.421 - 0.906i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(319s/2ΓR(s)L(s)=((0.4210.906i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 319 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.421 - 0.906i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 319319    =    112911 \cdot 29
Sign: 0.4210.906i0.421 - 0.906i
Analytic conductor: 1.481421.48142
Root analytic conductor: 1.481421.48142
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ319(128,)\chi_{319} (128, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 319, (0: ), 0.4210.906i)(1,\ 319,\ (0:\ ),\ 0.421 - 0.906i)

Particular Values

L(12)L(\frac{1}{2}) \approx 2.2984316071.466611677i2.298431607 - 1.466611677i
L(12)L(\frac12) \approx 2.2984316071.466611677i2.298431607 - 1.466611677i
L(1)L(1) \approx 1.9697136670.8158712504i1.969713667 - 0.8158712504i
L(1)L(1) \approx 1.9697136670.8158712504i1.969713667 - 0.8158712504i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad11 1 1
29 1 1
good2 1+(0.9510.309i)T 1 + (0.951 - 0.309i)T
3 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
5 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
7 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
13 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
17 1+(0.9510.309i)T 1 + (-0.951 - 0.309i)T
19 1+(0.587+0.809i)T 1 + (-0.587 + 0.809i)T
23 1+T 1 + T
31 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
37 1+(0.587+0.809i)T 1 + (0.587 + 0.809i)T
41 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
43 1iT 1 - iT
47 1+(0.587+0.809i)T 1 + (-0.587 + 0.809i)T
53 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
59 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
61 1+(0.9510.309i)T 1 + (-0.951 - 0.309i)T
67 1T 1 - T
71 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
73 1+(0.5870.809i)T 1 + (-0.587 - 0.809i)T
79 1+(0.9510.309i)T 1 + (0.951 - 0.309i)T
83 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
89 1+iT 1 + iT
97 1+(0.9510.309i)T 1 + (0.951 - 0.309i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−25.00237898556459419998129966055, −24.58901508829854979369877002502, −23.58426963450734624364356767399, −22.57747145138544992440696822034, −21.520687990560396870905131242158, −21.1226602864384075809816680625, −20.15191338529568606403036078333, −19.62615022030843978781150000903, −17.834685673446630973194356023147, −16.861148676672509600677495695405, −15.94097377330563390137560607762, −15.17636481883180801406917092836, −14.71198631380233332620819729679, −13.30107900393986176794478476096, −12.8340265758598796186755955286, −11.429788928905716553275286191677, −10.8381435332592640567699379587, −9.11667428577254030258629567808, −8.425506515595833227528960657152, −7.58473074442533043872991905223, −5.88228384298036932340527115346, −4.915529016063408451616918498513, −4.3681585376316529177396228753, −3.11833956380532663456438694602, −1.94281547192344600712974598763, 1.49334617639516090936940977479, 2.43878514299481468885099256884, 3.596803797426690241409077111186, 4.48350955971953564978303327662, 6.12502237622174983141798980601, 6.96805168158769854964504458124, 7.645497047813495114145122233518, 9.02690377279753231734951527197, 10.58178451733003498160650592083, 11.27066081075708179731598424245, 12.125862466198467121416519670789, 13.30512625633963677192836579118, 14.03486857014266607311350589965, 14.642604688912718148787987242, 15.4208154398111197013500025217, 16.83720585381644720730244905728, 18.13720619515626823664499352519, 18.89248090630589851780717906545, 19.68032552484494361339064230370, 20.58701630701660332454490232023, 21.32919346542754795251309057233, 22.46173104709271562072890532479, 23.429493994820739337646284176551, 23.81497634419343336069901809679, 24.79525161367746171471168023551

Graph of the ZZ-function along the critical line