L(s) = 1 | + (0.951 + 0.309i)2-s + (0.587 + 0.809i)3-s + (0.809 + 0.587i)4-s + (−0.309 − 0.951i)5-s + (0.309 + 0.951i)6-s + (0.809 + 0.587i)7-s + (0.587 + 0.809i)8-s + (−0.309 + 0.951i)9-s − i·10-s + i·12-s + (0.309 − 0.951i)13-s + (0.587 + 0.809i)14-s + (0.587 − 0.809i)15-s + (0.309 + 0.951i)16-s + (−0.951 + 0.309i)17-s + (−0.587 + 0.809i)18-s + ⋯ |
L(s) = 1 | + (0.951 + 0.309i)2-s + (0.587 + 0.809i)3-s + (0.809 + 0.587i)4-s + (−0.309 − 0.951i)5-s + (0.309 + 0.951i)6-s + (0.809 + 0.587i)7-s + (0.587 + 0.809i)8-s + (−0.309 + 0.951i)9-s − i·10-s + i·12-s + (0.309 − 0.951i)13-s + (0.587 + 0.809i)14-s + (0.587 − 0.809i)15-s + (0.309 + 0.951i)16-s + (−0.951 + 0.309i)17-s + (−0.587 + 0.809i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 319 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.421 + 0.906i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 319 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.421 + 0.906i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.298431607 + 1.466611677i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.298431607 + 1.466611677i\) |
\(L(1)\) |
\(\approx\) |
\(1.969713667 + 0.8158712504i\) |
\(L(1)\) |
\(\approx\) |
\(1.969713667 + 0.8158712504i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 29 | \( 1 \) |
good | 2 | \( 1 + (0.951 + 0.309i)T \) |
| 3 | \( 1 + (0.587 + 0.809i)T \) |
| 5 | \( 1 + (-0.309 - 0.951i)T \) |
| 7 | \( 1 + (0.809 + 0.587i)T \) |
| 13 | \( 1 + (0.309 - 0.951i)T \) |
| 17 | \( 1 + (-0.951 + 0.309i)T \) |
| 19 | \( 1 + (-0.587 - 0.809i)T \) |
| 23 | \( 1 + T \) |
| 31 | \( 1 + (-0.951 - 0.309i)T \) |
| 37 | \( 1 + (0.587 - 0.809i)T \) |
| 41 | \( 1 + (0.587 + 0.809i)T \) |
| 43 | \( 1 + iT \) |
| 47 | \( 1 + (-0.587 - 0.809i)T \) |
| 53 | \( 1 + (0.309 - 0.951i)T \) |
| 59 | \( 1 + (-0.809 - 0.587i)T \) |
| 61 | \( 1 + (-0.951 + 0.309i)T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 + (-0.309 - 0.951i)T \) |
| 73 | \( 1 + (-0.587 + 0.809i)T \) |
| 79 | \( 1 + (0.951 + 0.309i)T \) |
| 83 | \( 1 + (-0.309 - 0.951i)T \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 + (0.951 + 0.309i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.79525161367746171471168023551, −23.81497634419343336069901809679, −23.429493994820739337646284176551, −22.46173104709271562072890532479, −21.32919346542754795251309057233, −20.58701630701660332454490232023, −19.68032552484494361339064230370, −18.89248090630589851780717906545, −18.13720619515626823664499352519, −16.83720585381644720730244905728, −15.4208154398111197013500025217, −14.642604688912718148787987242, −14.03486857014266607311350589965, −13.30512625633963677192836579118, −12.125862466198467121416519670789, −11.27066081075708179731598424245, −10.58178451733003498160650592083, −9.02690377279753231734951527197, −7.645497047813495114145122233518, −6.96805168158769854964504458124, −6.12502237622174983141798980601, −4.48350955971953564978303327662, −3.596803797426690241409077111186, −2.43878514299481468885099256884, −1.49334617639516090936940977479,
1.94281547192344600712974598763, 3.11833956380532663456438694602, 4.3681585376316529177396228753, 4.915529016063408451616918498513, 5.88228384298036932340527115346, 7.58473074442533043872991905223, 8.425506515595833227528960657152, 9.11667428577254030258629567808, 10.8381435332592640567699379587, 11.429788928905716553275286191677, 12.8340265758598796186755955286, 13.30107900393986176794478476096, 14.71198631380233332620819729679, 15.17636481883180801406917092836, 15.94097377330563390137560607762, 16.861148676672509600677495695405, 17.834685673446630973194356023147, 19.62615022030843978781150000903, 20.15191338529568606403036078333, 21.1226602864384075809816680625, 21.520687990560396870905131242158, 22.57747145138544992440696822034, 23.58426963450734624364356767399, 24.58901508829854979369877002502, 25.00237898556459419998129966055