Properties

Label 1-319-319.171-r0-0-0
Degree 11
Conductor 319319
Sign 0.2890.957i-0.289 - 0.957i
Analytic cond. 1.481421.48142
Root an. cond. 1.481421.48142
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.880 − 0.473i)2-s + (−0.834 − 0.550i)3-s + (0.550 + 0.834i)4-s + (−0.983 − 0.178i)5-s + (0.473 + 0.880i)6-s + (−0.936 + 0.351i)7-s + (−0.0896 − 0.995i)8-s + (0.393 + 0.919i)9-s + (0.781 + 0.623i)10-s i·12-s + (0.753 + 0.657i)13-s + (0.990 + 0.134i)14-s + (0.722 + 0.691i)15-s + (−0.393 + 0.919i)16-s + (−0.587 + 0.809i)17-s + (0.0896 − 0.995i)18-s + ⋯
L(s)  = 1  + (−0.880 − 0.473i)2-s + (−0.834 − 0.550i)3-s + (0.550 + 0.834i)4-s + (−0.983 − 0.178i)5-s + (0.473 + 0.880i)6-s + (−0.936 + 0.351i)7-s + (−0.0896 − 0.995i)8-s + (0.393 + 0.919i)9-s + (0.781 + 0.623i)10-s i·12-s + (0.753 + 0.657i)13-s + (0.990 + 0.134i)14-s + (0.722 + 0.691i)15-s + (−0.393 + 0.919i)16-s + (−0.587 + 0.809i)17-s + (0.0896 − 0.995i)18-s + ⋯

Functional equation

Λ(s)=(319s/2ΓR(s)L(s)=((0.2890.957i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 319 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.289 - 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(319s/2ΓR(s)L(s)=((0.2890.957i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 319 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.289 - 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 319319    =    112911 \cdot 29
Sign: 0.2890.957i-0.289 - 0.957i
Analytic conductor: 1.481421.48142
Root analytic conductor: 1.481421.48142
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ319(171,)\chi_{319} (171, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 319, (0: ), 0.2890.957i)(1,\ 319,\ (0:\ ),\ -0.289 - 0.957i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.18511853570.2494942141i0.1851185357 - 0.2494942141i
L(12)L(\frac12) \approx 0.18511853570.2494942141i0.1851185357 - 0.2494942141i
L(1)L(1) \approx 0.38119829060.1418099143i0.3811982906 - 0.1418099143i
L(1)L(1) \approx 0.38119829060.1418099143i0.3811982906 - 0.1418099143i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad11 1 1
29 1 1
good2 1+(0.8800.473i)T 1 + (-0.880 - 0.473i)T
3 1+(0.8340.550i)T 1 + (-0.834 - 0.550i)T
5 1+(0.9830.178i)T 1 + (-0.983 - 0.178i)T
7 1+(0.936+0.351i)T 1 + (-0.936 + 0.351i)T
13 1+(0.753+0.657i)T 1 + (0.753 + 0.657i)T
17 1+(0.587+0.809i)T 1 + (-0.587 + 0.809i)T
19 1+(0.3510.936i)T 1 + (0.351 - 0.936i)T
23 1+(0.9000.433i)T 1 + (-0.900 - 0.433i)T
31 1+(0.880+0.473i)T 1 + (0.880 + 0.473i)T
37 1+(0.5120.858i)T 1 + (0.512 - 0.858i)T
41 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
43 1+(0.433+0.900i)T 1 + (-0.433 + 0.900i)T
47 1+(0.5120.858i)T 1 + (-0.512 - 0.858i)T
53 1+(0.4730.880i)T 1 + (0.473 - 0.880i)T
59 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
61 1+(0.998+0.0448i)T 1 + (-0.998 + 0.0448i)T
67 1+(0.2220.974i)T 1 + (0.222 - 0.974i)T
71 1+(0.3930.919i)T 1 + (0.393 - 0.919i)T
73 1+(0.7220.691i)T 1 + (-0.722 - 0.691i)T
79 1+(0.919+0.393i)T 1 + (-0.919 + 0.393i)T
83 1+(0.9630.266i)T 1 + (0.963 - 0.266i)T
89 1+(0.4330.900i)T 1 + (-0.433 - 0.900i)T
97 1+(0.998+0.0448i)T 1 + (0.998 + 0.0448i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−25.68392249728663778873922425017, −24.509811680099733776409895657675, −23.48343738328638921515029380811, −22.95562239386160409752314868267, −22.21746506682864985997897121595, −20.54754290419922780540280691524, −20.09098040303207055412941942502, −18.86921943422028215763360560823, −18.240846421931287481477842248393, −17.161334177042522898493325340075, −16.22462201044483186026772159213, −15.80545500273976100629335984068, −15.07841536608454957142336681279, −13.63019014052057864462094136769, −12.1387339046153991294720711011, −11.3942158738363132844705076670, −10.40404879337376744052962662487, −9.778328405282804955279681524037, −8.553325721952438571708655877888, −7.45257228468068755959081284554, −6.52714705002593862883578107872, −5.663274608314923842470424170305, −4.272551990483358204454671368738, −3.13179881410007586908090887274, −0.899123734282260299277577385670, 0.411903932632879845573360756744, 1.88856565786682972086661668860, 3.32043476626717861016853063528, 4.500903638639459740805347937094, 6.27722815488221970668451486050, 6.87419741400716236033499385161, 8.06153289638971849781043755589, 8.89126310310792113350284939449, 10.14578099461702033595110671916, 11.16772299857637619566701670845, 11.80242391294496349440429274587, 12.63438342994104450265097463958, 13.406721986951264819606292223588, 15.42155611973267433725982404733, 16.13084462222320843335487693852, 16.72500040034241487365469669135, 17.920835323674628311662344155337, 18.5963303079925856351250936407, 19.50109353437525490121674369189, 19.8939968757461241885083602317, 21.389666035207480523349886783455, 22.1877999876274970537070639915, 23.10633340765143516962104328321, 24.040444565855750595449252637409, 24.854293920843292957282159312014

Graph of the ZZ-function along the critical line