L(s) = 1 | + (−0.880 − 0.473i)2-s + (−0.834 − 0.550i)3-s + (0.550 + 0.834i)4-s + (−0.983 − 0.178i)5-s + (0.473 + 0.880i)6-s + (−0.936 + 0.351i)7-s + (−0.0896 − 0.995i)8-s + (0.393 + 0.919i)9-s + (0.781 + 0.623i)10-s − i·12-s + (0.753 + 0.657i)13-s + (0.990 + 0.134i)14-s + (0.722 + 0.691i)15-s + (−0.393 + 0.919i)16-s + (−0.587 + 0.809i)17-s + (0.0896 − 0.995i)18-s + ⋯ |
L(s) = 1 | + (−0.880 − 0.473i)2-s + (−0.834 − 0.550i)3-s + (0.550 + 0.834i)4-s + (−0.983 − 0.178i)5-s + (0.473 + 0.880i)6-s + (−0.936 + 0.351i)7-s + (−0.0896 − 0.995i)8-s + (0.393 + 0.919i)9-s + (0.781 + 0.623i)10-s − i·12-s + (0.753 + 0.657i)13-s + (0.990 + 0.134i)14-s + (0.722 + 0.691i)15-s + (−0.393 + 0.919i)16-s + (−0.587 + 0.809i)17-s + (0.0896 − 0.995i)18-s + ⋯ |
Λ(s)=(=(319s/2ΓR(s)L(s)(−0.289−0.957i)Λ(1−s)
Λ(s)=(=(319s/2ΓR(s)L(s)(−0.289−0.957i)Λ(1−s)
Degree: |
1 |
Conductor: |
319
= 11⋅29
|
Sign: |
−0.289−0.957i
|
Analytic conductor: |
1.48142 |
Root analytic conductor: |
1.48142 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ319(171,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 319, (0: ), −0.289−0.957i)
|
Particular Values
L(21) |
≈ |
0.1851185357−0.2494942141i |
L(21) |
≈ |
0.1851185357−0.2494942141i |
L(1) |
≈ |
0.3811982906−0.1418099143i |
L(1) |
≈ |
0.3811982906−0.1418099143i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1 |
| 29 | 1 |
good | 2 | 1+(−0.880−0.473i)T |
| 3 | 1+(−0.834−0.550i)T |
| 5 | 1+(−0.983−0.178i)T |
| 7 | 1+(−0.936+0.351i)T |
| 13 | 1+(0.753+0.657i)T |
| 17 | 1+(−0.587+0.809i)T |
| 19 | 1+(0.351−0.936i)T |
| 23 | 1+(−0.900−0.433i)T |
| 31 | 1+(0.880+0.473i)T |
| 37 | 1+(0.512−0.858i)T |
| 41 | 1+(−0.951+0.309i)T |
| 43 | 1+(−0.433+0.900i)T |
| 47 | 1+(−0.512−0.858i)T |
| 53 | 1+(0.473−0.880i)T |
| 59 | 1+(0.309−0.951i)T |
| 61 | 1+(−0.998+0.0448i)T |
| 67 | 1+(0.222−0.974i)T |
| 71 | 1+(0.393−0.919i)T |
| 73 | 1+(−0.722−0.691i)T |
| 79 | 1+(−0.919+0.393i)T |
| 83 | 1+(0.963−0.266i)T |
| 89 | 1+(−0.433−0.900i)T |
| 97 | 1+(0.998+0.0448i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−25.68392249728663778873922425017, −24.509811680099733776409895657675, −23.48343738328638921515029380811, −22.95562239386160409752314868267, −22.21746506682864985997897121595, −20.54754290419922780540280691524, −20.09098040303207055412941942502, −18.86921943422028215763360560823, −18.240846421931287481477842248393, −17.161334177042522898493325340075, −16.22462201044483186026772159213, −15.80545500273976100629335984068, −15.07841536608454957142336681279, −13.63019014052057864462094136769, −12.1387339046153991294720711011, −11.3942158738363132844705076670, −10.40404879337376744052962662487, −9.778328405282804955279681524037, −8.553325721952438571708655877888, −7.45257228468068755959081284554, −6.52714705002593862883578107872, −5.663274608314923842470424170305, −4.272551990483358204454671368738, −3.13179881410007586908090887274, −0.899123734282260299277577385670,
0.411903932632879845573360756744, 1.88856565786682972086661668860, 3.32043476626717861016853063528, 4.500903638639459740805347937094, 6.27722815488221970668451486050, 6.87419741400716236033499385161, 8.06153289638971849781043755589, 8.89126310310792113350284939449, 10.14578099461702033595110671916, 11.16772299857637619566701670845, 11.80242391294496349440429274587, 12.63438342994104450265097463958, 13.406721986951264819606292223588, 15.42155611973267433725982404733, 16.13084462222320843335487693852, 16.72500040034241487365469669135, 17.920835323674628311662344155337, 18.5963303079925856351250936407, 19.50109353437525490121674369189, 19.8939968757461241885083602317, 21.389666035207480523349886783455, 22.1877999876274970537070639915, 23.10633340765143516962104328321, 24.040444565855750595449252637409, 24.854293920843292957282159312014