L(s) = 1 | + (0.639 − 0.768i)2-s + (0.391 + 0.920i)3-s + (−0.181 − 0.983i)4-s + (−0.557 − 0.829i)5-s + (0.957 + 0.288i)6-s + (0.899 + 0.437i)7-s + (−0.872 − 0.489i)8-s + (−0.694 + 0.719i)9-s + (−0.994 − 0.102i)10-s + (0.661 + 0.749i)11-s + (0.833 − 0.551i)12-s + (0.969 + 0.245i)13-s + (0.911 − 0.411i)14-s + (0.545 − 0.838i)15-s + (−0.934 + 0.357i)16-s + (0.0948 + 0.995i)17-s + ⋯ |
L(s) = 1 | + (0.639 − 0.768i)2-s + (0.391 + 0.920i)3-s + (−0.181 − 0.983i)4-s + (−0.557 − 0.829i)5-s + (0.957 + 0.288i)6-s + (0.899 + 0.437i)7-s + (−0.872 − 0.489i)8-s + (−0.694 + 0.719i)9-s + (−0.994 − 0.102i)10-s + (0.661 + 0.749i)11-s + (0.833 − 0.551i)12-s + (0.969 + 0.245i)13-s + (0.911 − 0.411i)14-s + (0.545 − 0.838i)15-s + (−0.934 + 0.357i)16-s + (0.0948 + 0.995i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 431 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.879 + 0.476i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 431 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.879 + 0.476i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.798631298 + 0.7090345291i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.798631298 + 0.7090345291i\) |
\(L(1)\) |
\(\approx\) |
\(1.619135798 - 0.1323357355i\) |
\(L(1)\) |
\(\approx\) |
\(1.619135798 - 0.1323357355i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 431 | \( 1 \) |
good | 2 | \( 1 + (0.639 - 0.768i)T \) |
| 3 | \( 1 + (0.391 + 0.920i)T \) |
| 5 | \( 1 + (-0.557 - 0.829i)T \) |
| 7 | \( 1 + (0.899 + 0.437i)T \) |
| 11 | \( 1 + (0.661 + 0.749i)T \) |
| 13 | \( 1 + (0.969 + 0.245i)T \) |
| 17 | \( 1 + (0.0948 + 0.995i)T \) |
| 19 | \( 1 + (-0.961 - 0.274i)T \) |
| 23 | \( 1 + (-0.999 - 0.0146i)T \) |
| 29 | \( 1 + (0.724 - 0.688i)T \) |
| 31 | \( 1 + (-0.0219 + 0.999i)T \) |
| 37 | \( 1 + (0.672 + 0.739i)T \) |
| 41 | \( 1 + (0.0511 + 0.998i)T \) |
| 43 | \( 1 + (0.994 - 0.102i)T \) |
| 47 | \( 1 + (-0.252 - 0.967i)T \) |
| 53 | \( 1 + (0.998 - 0.0584i)T \) |
| 59 | \( 1 + (-0.533 - 0.845i)T \) |
| 61 | \( 1 + (0.593 + 0.804i)T \) |
| 67 | \( 1 + (-0.495 + 0.868i)T \) |
| 71 | \( 1 + (0.773 + 0.634i)T \) |
| 73 | \( 1 + (0.987 + 0.160i)T \) |
| 79 | \( 1 + (0.923 - 0.384i)T \) |
| 83 | \( 1 + (-0.224 + 0.974i)T \) |
| 89 | \( 1 + (-0.167 + 0.985i)T \) |
| 97 | \( 1 + (0.0802 - 0.996i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.914268534581237987946747844361, −23.1725973646951561774688830, −22.51622461609144635804345464861, −21.344455915827102806376041069769, −20.48260305359867230260465735870, −19.49478230694955604511970666361, −18.382447391119005844470835108064, −17.94767522441285908588604881846, −16.86712883034559320737802641003, −15.83874252015433072566946846559, −14.824710747084233184741288033073, −14.09616755165767684545614781060, −13.74339969338792398444182239642, −12.46207003202979341816550705322, −11.586964452674417773095387605862, −10.89948122740052286078119494172, −8.96742652624244464209481763956, −8.093077634090396983635150736524, −7.53059894248923439219475501065, −6.536813256823261151852135248403, −5.843963446690305763176487331700, −4.21403140378928111398434056253, −3.46585145684805437982137744274, −2.293614439314262317367711852320, −0.62213250621931615964035815691,
1.29234653334718502347563009464, 2.29939643547685540808715008326, 3.88118426321039265227179394785, 4.26384028228498494323457191535, 5.15268406911227748536626749254, 6.264543123713371043904732552752, 8.22313514237386375710282787220, 8.728621660993741369723868560737, 9.760457938258097964903780236017, 10.77875152649428482976726808755, 11.59937275853873504607250706494, 12.33355520686737590373197940879, 13.42352275615940728253177446298, 14.44162296918441604221694613851, 15.12044452583558613218676228317, 15.789868446858453874659833717072, 16.94149665199537242092890831797, 18.0060584111051060773988514163, 19.33262814380233115099664802603, 19.87845638944486017620777713322, 20.71155144153688428325316674258, 21.30657042573981031290011294928, 21.944649738981312396864219191407, 23.14363144739848130679312226636, 23.712220972741518274577263826667