L(s) = 1 | + (0.639 − 0.768i)2-s + (0.391 + 0.920i)3-s + (−0.181 − 0.983i)4-s + (−0.557 − 0.829i)5-s + (0.957 + 0.288i)6-s + (0.899 + 0.437i)7-s + (−0.872 − 0.489i)8-s + (−0.694 + 0.719i)9-s + (−0.994 − 0.102i)10-s + (0.661 + 0.749i)11-s + (0.833 − 0.551i)12-s + (0.969 + 0.245i)13-s + (0.911 − 0.411i)14-s + (0.545 − 0.838i)15-s + (−0.934 + 0.357i)16-s + (0.0948 + 0.995i)17-s + ⋯ |
L(s) = 1 | + (0.639 − 0.768i)2-s + (0.391 + 0.920i)3-s + (−0.181 − 0.983i)4-s + (−0.557 − 0.829i)5-s + (0.957 + 0.288i)6-s + (0.899 + 0.437i)7-s + (−0.872 − 0.489i)8-s + (−0.694 + 0.719i)9-s + (−0.994 − 0.102i)10-s + (0.661 + 0.749i)11-s + (0.833 − 0.551i)12-s + (0.969 + 0.245i)13-s + (0.911 − 0.411i)14-s + (0.545 − 0.838i)15-s + (−0.934 + 0.357i)16-s + (0.0948 + 0.995i)17-s + ⋯ |
Λ(s)=(=(431s/2ΓR(s+1)L(s)(0.879+0.476i)Λ(1−s)
Λ(s)=(=(431s/2ΓR(s+1)L(s)(0.879+0.476i)Λ(1−s)
Degree: |
1 |
Conductor: |
431
|
Sign: |
0.879+0.476i
|
Analytic conductor: |
46.3173 |
Root analytic conductor: |
46.3173 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ431(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 431, (1: ), 0.879+0.476i)
|
Particular Values
L(21) |
≈ |
2.798631298+0.7090345291i |
L(21) |
≈ |
2.798631298+0.7090345291i |
L(1) |
≈ |
1.619135798−0.1323357355i |
L(1) |
≈ |
1.619135798−0.1323357355i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 431 | 1 |
good | 2 | 1+(0.639−0.768i)T |
| 3 | 1+(0.391+0.920i)T |
| 5 | 1+(−0.557−0.829i)T |
| 7 | 1+(0.899+0.437i)T |
| 11 | 1+(0.661+0.749i)T |
| 13 | 1+(0.969+0.245i)T |
| 17 | 1+(0.0948+0.995i)T |
| 19 | 1+(−0.961−0.274i)T |
| 23 | 1+(−0.999−0.0146i)T |
| 29 | 1+(0.724−0.688i)T |
| 31 | 1+(−0.0219+0.999i)T |
| 37 | 1+(0.672+0.739i)T |
| 41 | 1+(0.0511+0.998i)T |
| 43 | 1+(0.994−0.102i)T |
| 47 | 1+(−0.252−0.967i)T |
| 53 | 1+(0.998−0.0584i)T |
| 59 | 1+(−0.533−0.845i)T |
| 61 | 1+(0.593+0.804i)T |
| 67 | 1+(−0.495+0.868i)T |
| 71 | 1+(0.773+0.634i)T |
| 73 | 1+(0.987+0.160i)T |
| 79 | 1+(0.923−0.384i)T |
| 83 | 1+(−0.224+0.974i)T |
| 89 | 1+(−0.167+0.985i)T |
| 97 | 1+(0.0802−0.996i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−23.914268534581237987946747844361, −23.1725973646951561774688830, −22.51622461609144635804345464861, −21.344455915827102806376041069769, −20.48260305359867230260465735870, −19.49478230694955604511970666361, −18.382447391119005844470835108064, −17.94767522441285908588604881846, −16.86712883034559320737802641003, −15.83874252015433072566946846559, −14.824710747084233184741288033073, −14.09616755165767684545614781060, −13.74339969338792398444182239642, −12.46207003202979341816550705322, −11.586964452674417773095387605862, −10.89948122740052286078119494172, −8.96742652624244464209481763956, −8.093077634090396983635150736524, −7.53059894248923439219475501065, −6.536813256823261151852135248403, −5.843963446690305763176487331700, −4.21403140378928111398434056253, −3.46585145684805437982137744274, −2.293614439314262317367711852320, −0.62213250621931615964035815691,
1.29234653334718502347563009464, 2.29939643547685540808715008326, 3.88118426321039265227179394785, 4.26384028228498494323457191535, 5.15268406911227748536626749254, 6.264543123713371043904732552752, 8.22313514237386375710282787220, 8.728621660993741369723868560737, 9.760457938258097964903780236017, 10.77875152649428482976726808755, 11.59937275853873504607250706494, 12.33355520686737590373197940879, 13.42352275615940728253177446298, 14.44162296918441604221694613851, 15.12044452583558613218676228317, 15.789868446858453874659833717072, 16.94149665199537242092890831797, 18.0060584111051060773988514163, 19.33262814380233115099664802603, 19.87845638944486017620777713322, 20.71155144153688428325316674258, 21.30657042573981031290011294928, 21.944649738981312396864219191407, 23.14363144739848130679312226636, 23.712220972741518274577263826667