from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(431, base_ring=CyclotomicField(430))
M = H._module
chi = DirichletCharacter(H, M([31]))
pari: [g,chi] = znchar(Mod(17,431))
χ431(7,⋅)
χ431(13,⋅)
χ431(14,⋅)
χ431(17,⋅)
χ431(21,⋅)
χ431(28,⋅)
χ431(31,⋅)
χ431(34,⋅)
χ431(35,⋅)
χ431(37,⋅)
χ431(39,⋅)
χ431(42,⋅)
χ431(43,⋅)
χ431(51,⋅)
χ431(52,⋅)
χ431(56,⋅)
χ431(62,⋅)
χ431(63,⋅)
χ431(65,⋅)
χ431(67,⋅)
χ431(68,⋅)
χ431(70,⋅)
χ431(71,⋅)
χ431(73,⋅)
χ431(74,⋅)
χ431(77,⋅)
χ431(78,⋅)
χ431(79,⋅)
χ431(83,⋅)
χ431(84,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
7 → e(43031)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ431(17,a) |
−1 | 1 | e(4337) | e(438) | e(4331) | e(215141) | e(432) | e(43031) | e(4325) | e(4316) | e(215111) | e(21529) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)